The phenomenon of spiralling or helical multi-lobe formation in holes, produced by the BTA (Boring and Trepanning Association) machining, is experimentally investigated for the solid boring tool. The causes leading to spiralling are deduced from this investigation. The experimental approach pursued in exploring the problem involved the running of the machine, at analytically predicted critical speeds and observing the reoccurrence of the phenomenon. It has been established that sprialling is caused by defectiveness of the tool (radial oversize of the circle-land with respect to the leading pad around the circumference) and the coincidence of the lateral natural frequency of the boring bar-tool asssembly, with five cycles per revoution of the tool, relative to the workpiece. It has also been established that spiralling occurs only in five lobes for the commercially available BTA-solid tool and is a consequence of the standard position of the circle-land, relative to the leading pad. The trials are repeated a number of times with various workpiece materials, to assert validity of the observations.
Normal and oblique impact wear processes are characterized by unique features, which include the development of some residual stress components that vanish in unidirectional sliding. Parametric finite element analyses were conducted to estimate the likelihood locations for crack initiation, and the subsequent direction and rate of crack propagation in an elasto-plastic material with bi-linear isotropic hardening properties. The results showed that the increase in contact pressure can cause a significant increase in the size of the plastically deformed crack initiation zone and allows it to reach the surface. Such behavior is not predicted under continuous sliding conditions. The presence of surface friction forces in oblique impact, can also result in the development of a secondary region of high tensile stresses at the contact area. Using the crack tip slip displacement CTSD method, the rate of crack growth was found to be linearly proportional to the crack length, and significantly dependent on the contact pressure and the coefficient of friction at the crack surface. The small effect of the coefficient of friction at the micro-contact area on wear suggests that the effect of shear traction is mainly due to the increase in the depth of the crack nucleation zone. As expected, the increase of the material flow stress with strain-hardening has a wear reducing effect.
Impact-sliding fretting wear is a complex phenomenon due to the random nature of the flow-induced vibrations, and the self-induced tribological changes. Available models, which relate wear losses to the process variables, are empirical in nature and bear no physical similarity to the actual mathematical and physical attributes of the wear process. A generalized model is developed in the present work to mathematically describe the fretting wear process under various modes of motion, namely, impact, sliding and oscillatory. This model, which is based on the findings from the fracture mechanics analysis of the crack initiation and propagation processes, takes into consideration the simultaneous action of both the surface adhesion and subsurface fatigue mechanisms. The model also accounts for the micro-, and macro- contact configuration of the tube-support system. The closed form solution requires the calibration of single parameter, using a limited number of experiments, to account for the effect of environment and the support material. The model was validated using experimental data that are generated for Inconel 600 and Incology 800 tube materials at room and high temperature environment, and for different types of motion. The results showed that model can accurately predict wear losses within a factor of < ±3. This narrow range presents better than an order of magnitude improvement over the current state-of-the-art models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.