This study addresses multi-stage hybrid flow shop scheduling in which a job is reworked if the queue time between two arbitrary stages exceeds an upper limit. The problem is to determine the allocations of jobs to machines at each stage and the start times of jobs and rework setups/operations when incurred. A mixed integer programming model is proposed for each of the makespan and the total tardiness measures. Then, because the problem is NP-hard, a scheduling mechanism is proposed that consists of three phases: (a) filtering the jobs to be delayed; (b) searching the jobs to be reworked; and (c) dispatching non-delayed and delayed jobs sequentially. Simulation results show that the mechanism proposed in this study outperforms the conventional dispatching approach in the high rework setup time case for the makespan problem and low/high setup time cases for the tardiness problem. The best priority rules of the mechanism under each of the measures are also reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.