Fuzzy system has been known to provide a framework for handling uncertainties and imprecision by taking linguistic information from human experts. However, difficulties arise in determining effectively the fuzzy system configuration, i.e., the number of rules, input and output membership functions. A neuro-fuzzy system design methodology by combining neural network and fuzzy logic is developed in this paper to adaptively adjust the fuzzy membership functions and dynamically optimize the linguistic-fuzzy rules. The structure of a five-layer feedforward network is shown to determine systematically the correct fuzzy logic rules, tune optimally (in the sense of local region) the parameters of the membership functions, and perform accurately the fuzzy inference. It is shown both numerically and experimentally that engineering applications of the neuro-fuzzy system to vibration control have been very successful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.