Nanostructured graphene-oxide (GO) laminate membranes, exhibiting ultrahigh water flux, are excellent candidates for next generation nanofiltration and desalination membranes, provided the ionic rejection could be further increased without compromising the water flux. Using microscopic drift-diffusion experiments, we demonstrated the ultrahigh charge selectivity for GO membranes, with more than order of magnitude difference in the permeabilities of cationic and anionic species of equivalent hydration radii. Measuring diffusion of a wide range of ions of different size and charge, we were able to clearly disentangle different physical mechanisms contributing to the ionic sieving in GO membranes: electrostatic repulsion between ions and charged chemical groups; and the compression of the ionic hydration shell within the membrane's nanochannels, following the activated behavior. The charge-selectivity allows us to rationally design membranes with increased ionic rejection and opens up the field of ion exchange and electrodialysis to the GO membranes.
This letter reports the tunable liquid microlens using three laminar flows injected into an expansion chamber. Different lens shapes and curvatures can be achieved and tuned through the control of three flow rates. The expansion chamber is designed to improve the fluidic stability and maintain the ideal lens shape for precise microscale optical measurement. The optical aberration is also eliminated by minimizing the diffusive broadening at the interfaces. The collimation and focusing capabilities of three liquid microlenses are demonstrated. The tunable liquid microlens is promising as a tool to realize different optical components that can be integrated onto a microchip.
This letter reports a tunable planar optofluidic switch as illustrated by three laminar flow streams introduced into a focusing chamber. Different width of liquid core can be tuned via the imposed flow rate of these three laminar flow streams. The hydrodynamic tunability of the core-cladding interfaces is the key to realize microscale optical switching via total internal reflection. The optical switching capability is demonstrated having good agreement with optical simulations. The optofluidic optical switch can achieve a switching speed of 1.56 Hz and beyond with the potential for a seamless integration with other lab-on-a-chip devices for optical sensing applications.
This paper presents a planar optofluidic lens for light manipulation utilizing a combination of optofluidic biconvex lens with micromixer. Three light manipulation techniques including tunable optical diverging, collimating and focusing are realized by altering the refractive index of the optofluidic variable-focus lenses formed by solid polydimethylsiloxane (PDMS) walls and tunable liquid lens body. The optical power from the laser input can be increased or decreased with the tuning of the variable-focus lenses' refractive indexes. The optical power adjustment capabilities are demonstrated and characterized. The combinations of benefits of all lens' optical manipulation capabilities, greater mechanical stability, significant increase of optofluidic device's life time and seamless integration with other lab-on-a-chip functionalities provide a promising and versatile optofluidic compartment to integrate with lab-on-a-chip excitation and sensing applications. Optofluidic lens-including system for tunable fluorescence sensing is demonstrated showing 186% increase in detected fluorescence intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.