In this study, we are introducing a new drug-delivery approach to demineralized dentin substrates through microsized dentinal tubules in the form of drug-loaded nanocapsules. Chlorhexidine (CHX) is widely used in adhesive dentistry due to its nonspecific matrix metalloproteinase inhibitory effect and antibacterial activities. Poly(ε-caprolactone) nanocapsules (nano-PCL) loaded with CHX were fabricated by interfacial polymer deposition at PCL/CHX ratios of 125:10, 125:25, and 125:50. Unloaded nanocapsules (blank) were fabricated as control. The fabricated nanocapsules were characterized in vitro in terms of particle size, surface charges, particle recovery, encapsulation efficiency, and drug loading. Nanocapsule morphology, drug inclusion, structural properties, and crystallinity were investigated by scanning and transmission electron microscopes (SEM/TEM), energy-dispersive x-ray analysis, Fourier transform infrared spectroscopy, and x-ray diffraction. Initial screening of the antibacterial activities and the cytotoxicity of the nanocapsules were also conducted. Nanocapsules, as carried on ethanol/water solution, were delivered to demineralized dentin specimens connected to an ex vivo model setup simulating the pulpal pressure to study their infiltration, penetration depth, and retention inside the dentinal tubules by SEM/TEM. Nanocapsules were Ag labeled and delivered to demineralized dentin, followed by the application of a 2-step etch-and-rinse dentin adhesive. CHX-release profiles were characterized in vitro and ex vivo up to 25 d. Spherical nanocapsules were fabricated with a CHX core coated with a thin PCL shell. The blank nanocapsules exhibited the largest z-average diameter with negatively charged ζ-potential. With CHX incorporation, the nanocapsule size was decreased with a positive shift in ζ-potential. Nano-PCL/CHX at 125:50 showed the highest drug loading, antibacterial effect, and CHX release both in vitro and ex vivo. SEM and TEM revealed the deep penetration and retention of the CHX-loaded nanocapsules inside dentinal tubules and their ability to be gradually degraded to release CHX in vitro and ex vivo. Ag-labeled nanocapsules revealed the close association and even distribution of nanocapsules throughout the resin tag structure. This study demonstrated the potential of introducing this novel drug-delivery approach to demineralized dentin substrates and the resin-dentin interface with nanosized CHX-loaded nanocapsules through the microsized dentinal tubules.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Customized manufacturing of a miniaturized device with micro and mesoscale features is a key requirement of mechanical, electrical, electronic and medical devices. Powder-based 3D-printing processes offer a strong candidate for micromanufacturing due to the wide range of materials, fast production and high accuracy. This study presents a comprehensive review of the powder-based three-dimensional (3D)-printing processes and how these processes impact the creation of devices with micro and mesoscale features. This review also focuses on applications of devices with micro and mesoscale size features that are created by powder-based 3D-printing technology.
This study introduced novel glass ionomer cement dually-modified with TiO2 NP and chitosan with superior mechanical and antibacterial properties for potential applications in restorative and preventive dentistry. The modification of GIC powder with TiO2 NP showed to be more effective in enhancing the mechanical properties. However, the enhancement in the antibacterial properties was more evident with CH incorporation in GIC liquid. Although of the promising synergetic effect of the dual-modification of GIC with TiO2 NP/CH, further clinically-related studies are recommended. (J Esthet Restor Dent 29:146-156, 2017).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.