Partial cDNA clones for chicken gonadotrophin-releasing hormone (GnRH)-I were isolated by reverse transcription-polymerase chain reaction using total RNA from the hypothalami of domestic chickens. Primers for amplification were based on the nucleotide sequence of the mammalian GnRH genes. These amplified clones were used to screen a genomic library from which a series of overlapping clones was isolated. A 6.3 kb EcoRI fragment containing all the exons and 3.0 kb of the 5' upstream region was sequenced. The exon-intron structure of the gene was found to be of a similar configuration to those of the mammalian and osteichthyes GnRH genes analysed so far. Individual domains of the predicted prepropeptide are similar to those of mammalian GnRH prepropeptides, comprising a 23 amino acid signal peptide, the decapeptide hormone and a Gly-Lys-Arg cleavage site, followed by a 56 amino acid GnRH-associated peptide. The nucleotide sequence coding for the decapeptide hormone translates into the amino sequence for chicken GnRH-I. The prepropeptide has approximately 50% identity with mammalian prepropeptides and 25% identity with the teleost prepropeptides.
Hyperbaric oxygen preconditioning (HBO-PC) has been proposed as a safe and practical approach for neuroprotection in ischemic stroke. However, it is not known whether HPO-PC can improve cognitive deficits induced by cerebral ischemia, and the mechanistic basis for any beneficial effects remains unclear. We addressed this in the present study using rats subjected to middle cerebral artery occlusion (MCAO) as an ischemic stroke model following HBO-PC. Cognitive function and expression of phosphorylated neurofilament heavy polypeptide (pNF-H) and doublecortin (DCX) in the hippocampus were evaluated 14 days after reperfusion and after short interfering RNA-mediated knockdown of sirtuin1 (Sirt1). HBO-PC increased pNF-H and DCX expression and mitigated cognitive deficits in MCAO rats. However, these effects were abolished by Sirt1 knockdown. Our results suggest that HBO-PC can protect the brain from injury caused by ischemia-reperfusion and that Sirt1 is a potential molecular target for therapeutic approaches designed to minimize cognitive deficits caused by cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.