On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres’ surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres’ dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologic features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts.
By traversing the plume erupting from high southern latitudes on Saturn's moon Enceladus, Cassini orbiter instruments can directly sample the material therein. Cassini Plasma Spectrometer, CAPS, data show that a major plume component comprises previously‐undetected particles of nanometer scales and larger that bridge the mass gap between previously observed gaseous species and solid icy grains. This population is electrically charged both negative and positive, indicating that subsurface triboelectric charging, i.e., contact electrification of condensed plume material may occur through mutual collisions within vents. The electric field of Saturn's magnetosphere controls the jets' morphologies, separating particles according to mass and charge. Fine‐scale structuring of these particles' spatial distribution correlates with discrete plume jets' sources, and reveals locations of other possible active regions. The observed plume population likely forms a major component of high velocity nanometer particle streams detected outside Saturn's magnetosphere.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.
[1] The Saturnian moons in the inner magnetosphere are immersed in a plasma disk that rotates much faster than the moon's Keplerian speed. The interaction of the rotating plasma with the moons results in a disturbance in the Saturnian magnetospheric plasma that depends on the nature of obstacle that the moon represents. In particular at Enceladus, such perturbations in the magnetic field and flowing plasma enable us to infer the 3-D shape of the Enceladus plume and its outgassing rate. In this paper, we apply our 3-D magnetohydrodynamic model to extensively study the effects of different plume and disk plasma conditions on the interaction. By finding the best agreement with the observations of two diagnostic flybys, one with its point of closest approach on the upstream side and the other on the downstream side, we determine the plume intensity and configuration. We find that mass loading in the plume is less efficient close to the surface of the moon, where the neutral density is the highest. For E2 and E5, the opening angle of the plume is about 20°, and the plume is tilted toward the corotating direction. The upstream density has a significant effect on the mass loading rate, while its effect on the magnitude of the magnetic perturbation is less significant. An upstream velocity component in the Saturn direction helps to explain the observed magnetic perturbation in the B y component and signals the need to consider Enceladus's effect on the global plasma circulation in addition to the local effect. Quantitative comparisons of the simulated and observed interaction are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.