1T-TaS 2 undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics that support a quantum spin liquid state. Here, we determine the electronic and structural properties of 1T-TaS 2 using angle-resolved photoemission spectroscopy and X-Ray diffraction. At low temperatures, the 2π/2c-periodic band dispersion, along with half-integer-indexed diffraction peaks along the c axis, unambiguously indicates that the ground state of 1T-TaS 2 is a band insulator with interlayer dimerization. Upon heating, however, the system undergoes a transition into a Mott insulating state, which only exists in a narrow temperature window. Our results refute the idea of searching for quantum magnetism in 1T-TaS 2 only at low temperatures, and highlight the competition between on-site Coulomb repulsion and interlayer hopping as a crucial aspect for understanding the material's electronic properties.
Unveiling the driving force for a phase transition is normally difficult when multiple degrees of freedom are strongly coupled. One example is the nematic phase transition in iron-based superconductors. Its mechanism remains controversial due to a complex intertwining among different degrees of freedom. In this paper, we report a method for measuring the nematic susceptibly of FeSe 0.9 S 0.1 using angle-resolved photoemission spectroscopy (ARPES) and an in-situ strain-tuning device. The nematic susceptibility is characterized as an energy shift of band induced by a tunable uniaxial strain. We found that the temperature-dependence of the nematic susceptibility is strongly momentum dependent. As the temperature approaches the nematic transition temperature from the high temperature side, the nematic susceptibility remains weak at the Brillouin zone center while showing divergent behavior at the Brillouin zone corner. Our results highlight the complexity of the nematic order parameter in the momentum space, which provides crucial clues to the driving mechanism of the nematic phase transition. Our experimental method which can directly probe the electronic susceptibly in the momentum space provides a new way to study the complex phase transitions in various materials.
When passing through a phase transition, electronic system saves energy by opening energy gaps at the Fermi level. Delineating the energy gap anisotropy provides insights into the origin of the interactions that drive the phase transition. Here, we report the angle-resolved photoemission spectroscopy (ARPES) study on the detailed gap anisotropies in both the tetragonal magnetic and superconducting phases in Sr 1−x Na x Fe 2 As 2. First, we found that the spin-density-wave (SDW) gap is strongly anisotropic in the tetragonal magnetic phase. The gap magnitude correlates with the orbital character of Fermi surface closely. Second, we found that the SDW gap anisotropy is isostructural to the superconducting gap anisotropy regarding to the angular dependence, gap minima locations, and relative gap magnitudes. Our results indicate that the superconducting pairing interaction and magnetic interaction share the same origin. The intra-orbital scattering plays an important role in constructing these interactions resulting in the orbital-selective magnetism and superconductivity in iron-based superconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.