By measuring the pressure dependence of the velocity of sound, we have determined both the pressure dependence of the density and the Gruneisen constant u of liquid He. Measurements were made below 0.1 K and in the vicinity of 0.5 K. Our determinations of the pressure dependence of the density agree quite well with that determined by Boghosian and Meyer, who used a capacitance bridge. Since the latter results rely on the validity of the Clausius-Mossotti relation and a pressure-independent electric polarizability, the present work can be interpreted as supporting both of these assumptions.We found that u(pp) -= (p/c)dc/dp = 2.84 under the vapor pressure at 0.1 K. Using this value of u to calculate the attenuation of sound according to a three-phonon mechanism, we obtain an attenuation of less than half the measured value. Thus, the present theory of sound attenuation must be incomplete.
We characterize the spontaneous magnetic field, and determine the associated temperature T(g), in the superconducting state of (Ca(x)La(1-x)) (Ba(1.75-x)La(0.25+x)) Cu(3)O(y) using zero and longitudinal field muon spin resonance measurements for various values of x and y. Our major findings are (i) T(g) and T(c) are controlled by the same energy scale, (ii) the phase separation between hole poor and hole rich regions is a microscopic one, and (iii) spontaneous magnetic fields appear gradually with no moment size evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.