The present article deals with a review of the applications of the chemiluminescence to pharmaceutical analyses by using continuous-flow assemblies. A comprehensive study on the fundamentals of the chemiluminescence is also included.
The present paper deals with the first attempt to apply molecular connectivity calculations to predict a chemical property with analytical usefulness: the chemiluminescent behavior of substances when reacted with common oxidants in a liquid phase. Preliminary evidence when searching for new direct CL methods consisted of the examination of analyte reaction with a wide range of oxidants and media. This task, which results in time-consuming and trial-and-error expensive procedures, is necessary due to ensure empirical or theoretical rules for CL prediction are available. On the other hand, in quantitative structure-activity relationship studies, molecular connectivity is a topological method capable of describing the structure of a molecule by means of numbers named indices; subsequent regression in relation to the experimental values of the physical, chemical, or biological properties yields a series of functions called connectivity functions. Discriminant analysis was applied to 200 either chemiluminescent or nonchemiluminescent substances found either bibliographically or in an experimental screening. The method used for the selection of descriptors was a stepwise linear discriminant analysis from the Snedecor F-parameter. The classification criterion used was the minimum value of Mahalanobis. The quality of the discriminant function was calculated through the Wilks U-statistical parameter. Finally, the function was applied to a database including of more than 50,000 structurally heterogeneous compounds. The theoretical predictions were faced with the empirical evidence obtained through a continuous-flow manifold.
A new method is proposed for the determination of phenylephrine hydrochloride by flow injection analysis with direct chemiluminescence detection. The method is based on the oxidation of the drug by potassium permanganate in sulfuric acid medium at 80°C. The calibration graph is linear over the range 0.03–8 ppm phenylephrine hydrochloride, with a relative standard deviation (n = 51, 0.5 ppm) of 1.1% and sample throughput of 134/h. The influence of 38 different foreign compounds was tested, and the method was applied to the determination of phenylephrine hydrochloride in 8 different pharmaceutical formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.