In this study, we investigated the luminescence properties of erbium-doped potassium tantalite niobate (KTa
x
Nb1-x
O3 or KTN) ceramics, which were prepared by the conventional solid-state reaction synthesis method. In this work, we studied the relationships of the crystal structure, and Raman and photoluminescence (PL) spectra with the tantalum concentration, respectively. The experiments showed that the tantalum dopants modified the intensity of the green, red and near-infrared emission bands. The experiments also showed a blue shift for the 2 mol % erbium doped KTN samples with different tantalum compositions. Doping Ta not only led to the change in PL intensity but also in spectral shapes. The PL spectra showed the splitting peaks for the samples with low Ta compositions. Then these peaks combined and broadened as Ta concentration increase. When Ta was substituted for Nb completely, the luminescence intensity of the green emission band had an increase of approximately about one order of magnitude, which was because of the absence of the first-order phonon relaxation in the high-Ta-concentration samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.