Malacca Strait (MS) has an important role and potential for many countries. It is a major transportation route for oil and commodities across continents. In addition, various activities such as shipping, fishing, aquaculture, oil drilling, and energy are also carried out in MS. Tides strongly affect the MS environment so that it becomes a major parameter in MS management. This paper is the first study, which presents MS tidal hydrodynamics based on a baroclinic and nonhydrostatic approach. Tidal hydrodynamics in MS and the surrounding waters were assessed using tidal forces, temperature, salinity, and density. This study analyzes the amplitude, phase, current ellipses, and semi-major axis of the tides. These variables are obtained from the simulation results of the three-dimensional numerical models of M2 tides and combined tides (M2, S2, N2, K1, and O1) with nonhydrostatic models. Then the results obtained are verified by observation data. Amplitude and phase of the tidal wave in MS originate from two directions, namely the northern part of MS (Andaman Sea) and the South China Sea (SCS). Tides from the north of MS propagate into the MS, while tides from the SCS travel to Singapore Waters (SW) and the south of MS. This causes a complex residual flow in SW and shoaling in the middle of MS. Shoaling in the middle of MS is characterized by a large amplitude and semi-major, as in B. Siapiapi. The results of this analysis show that tidal waves are dominated by semidiurnal types rather than diurnal types. The M2 current ellipse has dominantly anticlockwise rotation along the west of the MS, while along the east of MS, it has generally a clockwise rotation.
This study aims to observe tidal sea behavior in Bay of Sabang by using a two-dimensional hydrodynamic model. The research domain was obtained from SRTM15, which had been interpolated so that it has a spatial resolution Δx = Δy = 0.1 minutes (185 meters). As a generator force, the open boundaries model is given five main tidal components (M2, S2, K1, N2, O1) obtained from TPXO 7.2 data. The model is simulated for 31 days with time step based on CFL condition criteria. Our model verification is quite good when compared with TMD prediction data (r = 0.9996). It shows that our model can be used for tidal hydrodynamics studies in Bay of Sabang. The results show that tides in Bay of Sabang are predominantly mixed prevailing semi-diurnal (F = 0.857). The speed of tidal currents in Bay of Sabang is quite small both for spring and neap tides. The difference in velocity between spring and neap tides reaches 0.6 cm/s.
This work aimed to determine the hydrodynamics of the Malacca Strait (MS) and the part of the South China Sea (SCS). The study uses the two-dimensional numerical model with a finite-difference method. The results show that the sea surface heights in MS and the part of SCS are reversed and consistent with assimilation data that derived from Simple
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.