We examine the spectral dependence in the visible frequency range of the polarization rotation of two-dimensional gratings consisting of chiral gold nanostructures with subwavelength features. The gratings, which do not diffract, are shown to exhibit giant specific rotation (approximately 10(4) degrees/mm) of polarization in direct transmission at normal incidence. The rotation is the same for light incident on the front and back sides of the sample. Such reciprocity indicates three dimensionality of the structure arising from the asymmetry of light-plasmon coupling at the air-metal and substrate-metal interfaces. The structures thus enable polarization control with quasi-two-dimensional planar objects. However, in contradiction with recently suggested interpretation of experiments on larger scale but otherwise similar structures, the observed polarization phenomena violate neither reciprocity nor time-reversal symmetry.
We report on the time-domain terahertz (THz) magneto-optical Kerr spectroscopy in the frequency range from 0.5 to 2.5 THz. The developed technique employs reflection geometry, enabling high-frequency noncontact Hall measurements in opaque samples. We also present a method to reveal the off-diagonal component of the complex dielectric tensor from the measured polarization-dependent THz wave forms. At a static magnetic field of 0.48 T, a large Kerr rotation over 10° originating from magnetoplasma resonance is observed in an n-type undoped InAs wafer at room temperature. This indicates the strong potential of this material for the polarization modulator in the THz regime.
We propose a numerical method for the misplacement phase error correction in terahertz time-domain reflection spectroscopy (THz-TDRS). The developed algorithm is based on the maximum entropy principle and can be readily implemented into data processing, allowing one to reveal material parameters of the opaque materials from the THz reflection measurements. The method resolves the phase retrieval problem in the THz-TDRS and dramatically simplifies the experimental procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.