We examine the spectral dependence in the visible frequency range of the polarization rotation of two-dimensional gratings consisting of chiral gold nanostructures with subwavelength features. The gratings, which do not diffract, are shown to exhibit giant specific rotation (approximately 10(4) degrees/mm) of polarization in direct transmission at normal incidence. The rotation is the same for light incident on the front and back sides of the sample. Such reciprocity indicates three dimensionality of the structure arising from the asymmetry of light-plasmon coupling at the air-metal and substrate-metal interfaces. The structures thus enable polarization control with quasi-two-dimensional planar objects. However, in contradiction with recently suggested interpretation of experiments on larger scale but otherwise similar structures, the observed polarization phenomena violate neither reciprocity nor time-reversal symmetry.
Threshold voltage shifts of a-IGZO TFTs on plastics against biastemperature stress were successfully reduced below 0.03 V, equivalent to those on glass substrates. We have developed an 11.7inch qHD (960×RGB×540) flexible bottom-emission active-matrix organic light-emitting diode (AMOLED) driven by a-IGZO TFT backplane fabricated on a transparent polyimide film.
We have successfully reduced threshold voltage shifts of amorphous In–Ga–Zn–O thin‐film transistors (a‐IGZO TFTs) on transparent polyimide films against bias‐temperature stress below 100 mV, which is equivalent to those on glass substrates. This high reliability was achieved by dense IGZO thin films and annealing temperature below 300 °C. We have reduced bulk defects of IGZO thin films and interface defects between gate insulator and IGZO thin film by optimizing deposition conditions of IGZO thin films and annealing conditions. Furthermore, a 3.0‐in. flexible active‐matrix organic light‐emitting diode was demonstrated with the highly reliable a‐IGZO TFT backplane on polyimide film. The polyimide film coating process is compatible with mass‐production lines. We believe that flexible organic light‐emitting diode displays can be mass produced using a‐IGZO TFT backplane on polyimide films.
We have reduced threshold voltage shift of IGZO TFTs processed at 200°C under bias-temperature stress of V g = 20 V at 70°C for 2000 s to 0.22 V by optimizing IGZO deposition and annealing conditions. A flexible AMOLED display with integrated gate driver circuits has been demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.