The biochemistry of liver maturation was studied by using the RLA209-15 fetal rat hepatocyte line that is temperature sensitive for maintenance of the differentiated fetal liver phenotype. At 33°C these cells were dedifferentiated; but at 40°C they were phenotypically differentiated and, like normal fetal hepatocytes, synthesized moderate levels of albumin and transferrin, high levels of authentic (69,000 and 73,000 molecular weight) rat fetal a-fetoprotein (AFP), and low levels of a 65,000-molecular-weight variant AFP. Our results indicated that administration of glucocorticoid hormones to RLA209-15 cells at 40°C induced a series of events associated with normal hepatocyte maturation; synthesis of fetal AFP was inhibited, whereas the synthesis of variant AFP, albumin, transferrin, tyrosine aminotransferase, and al-acid glycoprotein was induced.,The variant AFP was produced by RLA209-15 cells at both temperatures and was encoded by an mRNA of 1.7 kilobases (kb). The fetal AFP was encoded by an mRNA of 2.2 kb. Normal adult rat liver contained three AFP mRNAs of 2.2 (minor), 1.7, and 1.5 kb. The 1.7-kb adult liver AFP mRNA comigrated with the RNA found in RLA209-15 cells, and both directed the synthesis of a 50,000-molecular-weight precursor polypeptide of the variant AFP. Administration of glucocorticoids to RLA209-15 cells grown at 33°C stimulated synthesis of both the fetal and variant AFPs, but the levels of the 2.2-kb AFP mRNA were preferentially increased. RLA209-15 cells contained two glucocorticoid receptor mRNAs of 6.8 and 4.5 kb. The glucocorticoid-mediated maturation described above was blocked by the antiglucocorticoid RU486.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.