Abstract. Profile Hidden Markov Models (PHMMs) are used as a popular tool in bioinformatics for probabilistic sequence database searching. The search operation consists of computing the Viterbi score for each sequence in the database with respect to a given query PHMM. Because of the rapid growth of biological sequence databases, finding fast solutions is of highest importance to research in this area. Unfortunately, the required scan times of currently available sequential software implementations are very high. In this paper we show how reconfigurable hardware can be used as a computational platform to accelerate this application by two orders of magnitude.
Molecular biologists use hidden Markov models (HMMs) as a popular tool to statistically describe biological sequence families. This statistical description can then be used for sensitive and selective database scanning, e.g., new protein sequences are compared with a set of HMMs to detect functional similarities. Efficient dynamic-programming algorithms exist for solving this problem; however, current solutions still require significant scan times. These scan time requirements are likely to become even more severe due to the rapid growth in the size of these databases. This paper shows how reconfigurable architectures can be used to derive an efficient fine-grained parallelization of the dynamic programming calculation. We describe how this technique leads to significant runtime savings for HMM database scanning on a standard off-the-shelf field-programmable gate array (FPGA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.