This paper addresses the reliability of neuroclassifiers for bank note recognition. A local principal component analysis (PCA) method is applied to remove non-linear dependencies among variables and extract the main principal features of data. At first the data space is partitioned into regions by using a selforganizing map (SOM) model and then the PCA is performed in each region. A learning vector quantization (LVQ) network is employed as the main classifier of the system. By defining a new algorithm for rating the reliability and using a set of test data, we estimate the reliability of the system. The experimental results taken from 1,200 samples of US dollar bills show that the reliability is increased up to 100% when the number of regions as well as the number of codebook vectors in the LVQ classifier are taken properly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.