Chemical coating, hot compaction, and hot deformation techniques have been applied to prepare bulk isotropic and anisotropic Nd2Fe14B∕α-Fe nanocomposite magnets. The effect of α-Fe content on the structure and magnetic properties of the magnets were studied. For the isotropic magnets, the remanence (Br) increases as the α-Fe content increases, while the coercive force (Hci) drops simultaneously. For the anisotropic magnets, the Br rises first, peaking at 2vol% of α-Fe content, then falls as the α-Fe content increases, and Hci drops significantly for all the α-Fe containing anisotropic magnets. Crystal structure analysis shows that only the magnets with no more than 2vol% α-Fe exhibit strong c-axis crystal texture of Nd2Fe14B phase after deformation. Microstructure observation also shows that there are many Nd2Fe14B equiaxial grains even after hot deformation in the magnets with α-Fe more than 2vol%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.