To improve the coercivity of the Nd-Fe-B sintered magnets, the Cu29.8Al70.2 (at.%) powders with low melting point were introduced into the Nd-Fe-B magnets. The magnetic properties, microstructure, thermal stability and corrosion behavior of the sintered magnets with different amount of Cu29.8Al70.2 (0,0.25,0.50,0.75,1.0 wt.%) were investigated. When the amount of doped Cu29.8Al70.2 was less than 0.75 wt.%, the coercivity was improved, especially that of the magnets with 0.25 wt.% Cu29.8Al70.2, markedly increased to 13.97 kOe from 12.67 kOe (without CuAl). The improvement of magnetic properties could be attributed to enhanced wettability between Nd2Fe14B phase and Nd-rich phase and decreased exchange coupling between grains, which depended on the optimization of grain boundary microstructure and their distribution by codoping Cu and Al. With the addition of 0-1.0 wt.% Cu29.8Al70.2 powders, the reversible temperature coefficients of remanence and coercivity of the magnets could be also improved. The corrosion resistances was also found to be improved through small addition of Cu29.8Al70.2 powder in 3.5 wt.% NaCl solution by electrochemical and immersion tests, which could be due to the enhancement of the Nd-rich intergranular phase by addition Cu29.8Al70.2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.