A coherent mode (CM) in the edge pedestal region has been observed on different fluctuation quantities, including density fluctuation, electron temperature fluctuation and magnetic fluctuation in H mode plasma on the Experimental Advanced Superconducting Tokamak (EAST) tokamak. Measurements at different poloidal positions show that the local poloidal wavenumber is smallest at the outboard midplane and will increase with poloidal angle. This poloidal asymmetry is consistent with the flute-like assumption (i.e. k // ∼0) from which the toroidal mode number of the mode has been estimated as between 12 and 17. It was further found that the density fluctuation amplitude of the CM also demonstrated poloidal asymmetry. The appearance of a CM can clearly decrease or even stop the increase in the edge density, while the disappearance of a CM will lead to an increase in the pedestal density and density gradient. Statistical analysis showed there was a trend that as the CM mode amplitude increased, the rate of increase of the edge density decreased and the particle flux (Γ div ) onto the divertor plate increased. The CM sometimes showed burst behavior, and these bursts led bursts on Γ div with a time of about 230 μs, which is close to the time for particle flow from the outer midplane to the divertor targets along the scrape-off layer magnetic field line. This evidence showed that the CM had an effect on the outward transport of particles.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Recently, theoretical studies show that layered HfTe5 is at the boundary of weak & strong topological insulator (TI) and might crossover to a Dirac semimetal state by changing lattice parameters. The topological properties of 3D stacked HfTe5 are expected hence to be sensitive to pressures tuning. Here, we report pressure induced phase evolution in both electronic & crystal structures for HfTe5 with a culmination of pressure induced superconductivity. Our experiments indicated that the temperature for anomaly resistance peak (Tp) due to Lifshitz transition decreases first before climbs up to a maximum with pressure while the Tp minimum corresponds to the transition from a weak TI to strong TI. The HfTe5 crystal becomes superconductive above ~5.5 GPa where the Tp reaches maximum. The highest superconducting transition temperature (Tc) around 5 K was achieved at 20 GPa. Crystal structure studies indicate that HfTe5 transforms from a Cmcm phase across a monoclinic C2/m phase then to a P-1 phase with increasing pressure. Based on transport, structure studies a comprehensive phase diagram of HfTe5 is constructed as function of pressure. The work provides valuable experimental insights into the evolution on how to proceed from a weak TI precursor across a strong TI to superconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.