In this study, we aimed to investigate the significance of hepatic stellate cells (HSCs) activation in small-forsize fatty liver graft injury and to explore the underlying molecular mechanism in a rat liver transplantation model. A rat orthotopic liver transplantation model using fatty grafts (40% of fatty changes) and cirrhotic recipients was applied. Intragraft gene expression profiles, ultrastructure features and HSCs activation were compared among the rats received different types of grafts (whole vs. small-for-size, normal vs. fatty). The distinct molecular signature of small-for-size fatty graft injury was identified by cDNA microarray screening and confirmed by RT-PCR detection. In vitro functional studies were further conducted to investigate the direct effect of specific molecular signature on HSCs activation. HSCs activation was predominantly present in small-for-size fatty grafts during the first 2 weeks after transplantation, and was strongly correlated with progressive hepatic sinusoidal damage and significant upregulation of intragraft Wnt4 signaling pathway. In vitro suppression of Wnt4 expression could inhibit HSC activation directly. In conclusion, upregulation of Wnt4 signaling led to direct HSC activation and subsequently induced small-for-size fatty liver grafts injury. Discovery of this distinct mechanism may lay the foundation for prophylactic treatment for marginal graft injury in living donor liver transplantation.
Density modulation experiments have been conducted on Joint-TEXT (J-TEXT) Tokamak Ohmic discharge to investigate particle transport based on a model with constant diffusion plus inward convection. Like the HCN interferometer, the newly developed three-wave polarimeter-interferometer system (POLARIS) is used to measure the perturbed density. The comparison of results between the HCN interferometer and POLARIS is given. The consistent results indicate the validity of the analysis scheme. At lower densities, the typical particle confinement time τp is found to increase with electron density, while it saturates at higher densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.