The purpose of this work is to develop a technology for an automatic measurement process for determining the azimuth by the "Gyromax AK-2M" gyroscope. The accuracy of determining the principal values should be higher than by manual procedure. A method for digitizing the gyro oscillations using a camera with a linear sensor and programming code is proposed in this work. The working possibility of the line camera from Coptonix™ company was investigated, as well as the possibility of its connection to a single board computer Raspberry Pi 3B for data transmission and processing. The possibility of using the Python 3.0 programming language for these tasks was tested. Methodology. To implement this project, an integrated approach was used, using devices such as a camera with a linear sensor, a single board computer and facility, that simulates gyroscope oscillations. This research includes investigations in digitizing of data, computing the azimuth values and automatizing these processes. For automatized data computation were used the same two methods as in the regular manual measurements-Turning point method (TPM) and Pass-Through method (PTM). Results. The result of this work is an automated oscillation measurement system, that can be applied in gyroscopes. The system includes developed software, which connects the user to the linear camera and processing computer, records the necessary data, transfers them to the client-computer and calculates the necessary values. For the convenience of using the program by other users, the program is provided with a graphical user interface. The result of the program is a file with the extension XML, which contains data about measurements. Scientific novelty and practical significance. The new method of digitizing the gyroscope oscillations is proposed in this work. Application of a line camera and a single board computer for the digitization of measurements opens a lot of possibilities for improving the automation processes of the geodetic devices, which could increase the accuracy of measurement and decrease its duration. By developing this method of digitization, it is possible to start production of an improved version of gyro add-on GYROMAX AK-2M.
The aim of the work is to develop an automated measuring system in a mechanical gyrocompass with the help of specially developed hardware and software in order to facilitate the operation of the device and minimize observer errors. The developed complex provides automation only for the time method, as for the method of the turning point it is necessary to constantly contact the motion screw of the total station. The project is based on an integrated system, the hardware part of which contains a single-board computer, camera, and lens. The main software is a developed motion recognition algorithm with the help of image processing. This algorithm was created using the Python programming language and the open-source computer vision library OpenCV. With the help of the hardware, a video image of the gyroscope's reference scale is obtained, and with the help of the software, the moving light indicator and its position relative to the scale are identified in this image. The result of the study is a functioning automatic measurement system, which determines the value of the azimuth of the direction with the same accuracy as manual measurements. The system is controlled remotely via a computer and wi-fi network. To test the system, a series of automatic and manual measurements were performed simultaneously at the same point for the same direction. Based on the results obtained, it can be stated that the accuracy of the system is within the limits specified by the manufacturer of the device for manual measurements. The application of computer vision technology, namely the tracking of a moving object in the image for gyroscopic measurements can give a significant impetus to the development of automation systems for a wide range of measuring instruments, which in turn can improve the accuracy of measurement results. The developed system can be used together with the Gyromax AK-2M gyrocompass of GeoMessTechnik for carrying out automated measurements, training of new operators. With the help of the developed model, it is possible to avoid gross errors of the observer, to facilitate the measurement process which will not demand the constant presence of the operator near the device. In some dangerous conditions, this is a significant advantage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.