цієї роботи є вдосконалення (підвищення точності) методів урахування впливу земної атмосфери на результати вимірювань великих довжин, що реалізуються за допомогою електромагнітних хвиль на навколоземних трасах. Методика. Розглядається вплив земної атмосфери на швидкість поширення електромагнітного сигналу. Цей вплив враховують, вводячи в результат вимірювань поправки на середньоінтегральний показник заломлення повітря вздовж траси, що вимірюється. Для аналізу відібрано методи визначення цієї поправки, основані на заміні точного інтеграла, що визначає її величину, наближеними квадратурними формулами. Вказані квадратурні формули дають змогу подати точний інтеграл від показника заломлення повітря у вигляді функції локальних значень показника заломлення на трасі, що вимірюється. Основну увагу приділено квадратурним формулам, які є основою для нещодавно запропонованого градієнтного методу (який ґрунтується, зокрема, на використанні формули інтегрування Ейлера-Маклорена або многочленів Ерміта). Результати. Показано, що в градієнтного методу визначення середньоінтегрального показника заломлення повітря, який використовує інтерполяційні многочлени Ерміта, кращі точнісні можливості, ніж у градієнтного, основаного на формулах інтегрування Ейлера-Маклорена. Наукова новизна та практичне значення. Отримані результати дають змогу визначити найпридатніший для конкретних геодезичних застосувань метод визначення середньоінтегрального показника заломлення повітря з урахуванням умов вимірювання: геометрії траси та типу підстильної поверхні, кількості точок для вимірювань локальних значень показника заломлення та місць їхнього розташування. Ключові слова: градієнтний метод; середньоінтегральний показник заломлення повітря; земна атмосфера. Вступ Одним із найістотніших чинників, що обмежують точність віддалемірних вимірювань, здійснюваних за допомогою електромагнітних хвиль на навколоземних трасах, є вплив земної атмосфери на швидкість поширення електромагнітного сигналу [Андрусенко А. М.,
The purpose of this work is to develop a technology for an automatic measurement process for determining the azimuth by the "Gyromax AK-2M" gyroscope. The accuracy of determining the principal values should be higher than by manual procedure. A method for digitizing the gyro oscillations using a camera with a linear sensor and programming code is proposed in this work. The working possibility of the line camera from Coptonix™ company was investigated, as well as the possibility of its connection to a single board computer Raspberry Pi 3B for data transmission and processing. The possibility of using the Python 3.0 programming language for these tasks was tested. Methodology. To implement this project, an integrated approach was used, using devices such as a camera with a linear sensor, a single board computer and facility, that simulates gyroscope oscillations. This research includes investigations in digitizing of data, computing the azimuth values and automatizing these processes. For automatized data computation were used the same two methods as in the regular manual measurements-Turning point method (TPM) and Pass-Through method (PTM). Results. The result of this work is an automated oscillation measurement system, that can be applied in gyroscopes. The system includes developed software, which connects the user to the linear camera and processing computer, records the necessary data, transfers them to the client-computer and calculates the necessary values. For the convenience of using the program by other users, the program is provided with a graphical user interface. The result of the program is a file with the extension XML, which contains data about measurements. Scientific novelty and practical significance. The new method of digitizing the gyroscope oscillations is proposed in this work. Application of a line camera and a single board computer for the digitization of measurements opens a lot of possibilities for improving the automation processes of the geodetic devices, which could increase the accuracy of measurement and decrease its duration. By developing this method of digitization, it is possible to start production of an improved version of gyro add-on GYROMAX AK-2M.
is to carry out an analysis of the survey results of State Geodetic Network (SGN) points on the territory of Ukraine performed by the territorial divisions of the State Service for Geodesy, Cartography and Cadastre of Ukraine. Conduct a study to determine the impact of population density and forestry in the region on the number of lost points. Perform analysis of losses of geodetic points during the period of independence of our state. Pay attention to the lack of scientific and economic substantiation of the allowable number of points losses, as well as the availability of points that are unavailable and increase their number in the future. Consider the measures for the use of inaccessible points, which is due to an increase in the importance of private ownership of land in the community. Develop proposals for the correct interpretation of the protection zone around the points by introducing into the practice of field topographic and geodetic works of various types and types of easements. Method. The methods of mathematical statistics, mathematical methods of recording and ranking, methods of system analysis and quantitative methods of "operations research" are used to process the results of the SGN points examination. Results. On the territory of Ukraine during 2017-2018 a full-scale survey of the geodesic (planned) network points status of 1, 2 and 3 classes was carried out in order to check their condition on the ground. Scientific novelty and practical significance. The performed analysis allows to assess the changes in the status of the SGN, to estimate the loss of geodetic points in the regions and in the classes of networks over the past decades, to identify new trends in the status of the geodetic network, which will give grounds for the generalization of conclusions by the department of state geodetic supervision of the topographic, geodetic and cartographic activity of the State Service for Geodesy, Cartography and Cadastre of Ukraine apparatus. Practical worth of the work is to solve the problem of ensuring the functioning, development, modernization, reconstruction of the state geodetic network during the implementation of the State target scientific and technical program for the development of topographic and geodetic activity and national mapping.
The work aims to analyze and study the possibilities of using “Cetus” unmanned aerial vehicle (UAV) for performing topographic aerial surveys. The authors developed and tested aircraft-type UAV for topographic aerial photography. The studies were conducted on a specialized landfill, at which there is an appropriate number of situational points whose coordinates are determined with high accuracy. These points were used as both reference and control points. The obtained UAV aerial survey materials were subjected to a phototriangulation process to determine the orientation elements and to analyze, first and foremost, the angular orientation elements. The surveying was carried out on a mountainous territory, where the spatial coordinates of 37 situational points were determined by the method of ground-based GPS survey with an average accuracy of up to 0.05 m. These points were used as reference and control points. Aerial photography was performed in such a way that the scale of the images was as uniform as possible. The design solutions implemented in the Cetus UAV provide all the possibilities to perform aerial surveys of territories in strict compliance with the projected flight parameters. UAV equipment provides the necessary real-time correction of the position of the aerial camera. At the same time the optimum straightness of routes, stability of scales and mutual overlapping of pictures is reached. Regarding the accuracy of obtaining the spatial coordinates of the points of terrain objects, using “Cetus” UAV surveys, plans can even be made on a scale of even 1: 1000. As a result of the creation of the UAV “Cetus”, it became possible to perform the topographic aerial survey of the territories and to create large-scale orthophotos that fully meet the instructions. As a result of testing the “Cetus” UAV, it can be used in production processes when drawing up topographic plans for a large-scale series: 1: 1000 – 1: 5000, which will significantly save the cost of performing topographic work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.