Abstract. We describe a new 4D-Var inversion framework for nitrous oxide (N2O) based on the GEOS-Chem chemical transport model and its adjoint, and apply it in a series of observing system simulation experiments to assess how well N2O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasi-continuous N2O measurements (hourly averages used) from several long-term monitoring networks, N2O measurements collected from discrete air samples onboard a commercial aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container; CARIBIC), and quasi-continuous measurements from the airborne HIAPER Pole-to-Pole Observations (HIPPO) campaigns. For a 2-year inversion, we find that the surface and HIPPO observations can accurately resolve a uniform bias in emissions during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission errors are much more difficult to resolve given the long lifetime of N2O, and major parts of the world lack significant constraints on the seasonal cycle of fluxes. Current observations can largely correct a global bias in the stratospheric sink of N2O if emissions are known, but do not provide information on the temporal and spatial distribution of the sink. However, for the more realistic scenario where source and sink are both uncertain, we find that simultaneously optimizing both would require unrealistically small errors in model transport. Regardless, a bias in the magnitude of the N2O sink would not affect the a posteriori N2O emissions for the 2-year timescale used here, given realistic initial conditions, due to the timescale required for stratosphere–troposphere exchange (STE). The same does not apply to model errors in the rate of STE itself, which we show exerts a larger influence on the tropospheric burden of N2O than does the chemical loss rate over short (< 3 year) timescales. We use a stochastic estimate of the inverse Hessian for the inversion to evaluate the spatial resolution of emission constraints provided by the observations, and find that significant, spatially explicit constraints can be achieved in locations near and immediately upwind of surface measurements and the HIPPO flight tracks; however, these are mostly confined to North America, Europe, and Australia. None of the current observing networks are able to provide significant spatial information on tropical N2O emissions. There, averaging kernels (describing the sensitivity of the inversion to emissions in each grid square) are highly smeared spatially and extend even to the midlatitudes, so that tropical emissions risk being conflated with those elsewhere. For global inversions, therefore, the current lack of constraints on the tropics also places an important limit on our ability to understand extratropical emissions. Based on the error reduction statistics from the inverse Hessian, we characterize the atmospheric distribution of unconstrained N2O, and identify regions in and downwind of South America, central Africa, and Southeast Asia where new surface or profile measurements would have the most value for reducing present uncertainty in the global N2O budget.
Abstract.We use satellite observations of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectrometer (MODIS) together with the GEOS-Chem global chemical transport model to contrast export of aerosols from East Asia and North America during 2004-2010. The GEOSChem model reproduces the spatial distribution and temporal variations of Asian aerosol outflow generally well, although a low bias (−30 %) is found in the model fine mode AOD, particularly during summer. We use the model to identify 244 aerosol pollution export events from E. Asia and 251 export events from N. America over our 7-year study period. When these events are composited by season, we find that the AOD in the outflow is enhanced by 50-100 % relative to seasonal mean values. The composite Asian plume splits into one branch going poleward to the Arctic in 3-4 days, with the other crossing the Pacific Ocean in 6-8 days. A fraction of the aerosols is trapped in the subtropical Pacific High during spring and summer. The N. American plume travels to the northeast Atlantic, reaching Europe after 4-5 days. Part of the composite plume turns anticyclonically in the Azores High, where it slowly decays. Both the Asian and N. American export events are favored by a dipole structure in sea-level pressure anomalies, associated with midlatitude cyclone activity over the respective source regions. This dipole structure during outflow events is a strong feature for all seasons except summer, when convection becomes more important. The observed AOD in the E. Asian outflow exhibits stronger seasonality, with a spring maximum, than the N. American outflow, with a broad spring/summer maximum. The large spring AOD in the Asian outflow is the result of enhanced sulfate and dust aerosol concentrations, but is also due to a larger export efficiency of sulfate and SO 2 from the Asian boundary layer relative to the N. American boundary layer. While the N. American sulfate outflow is mostly found in the lower troposphere (1-3 km altitude), the Asian sulfate outflow occurs at higher altitudes (2-6 km). In the Asian outflow 42-59 % of the sulfate column is present above 2 km altitude, with only 24-35 % in the N. American outflow. We link this to the factor of 2-5 lower precipitation in the warm conveyor belts (WCB) of midlatitude cyclones over E. Asia compared to N. America. This relative lack of precipitation makes Asian WCB very efficient for injecting aerosols in the middle troposphere.
Abstract. We describe a new 4D-Var inversion framework for N2O based on the GEOS-Chem chemical transport model and its adjoint, and apply this framework in a series of observing system simulation experiments to assess how well N2O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasi-continuous N2O measurements (hourly averages used) from several long-term monitoring networks, N2O measurements collected from discrete air samples aboard a commercial aircraft (CARIBIC), and quasi-continuous measurements from an airborne pole-to-pole sampling campaign (HIPPO). For a two-year inversion, we find that the surface and HIPPO observations can accurately resolve a uniform bias in emissions during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission errors are much more difficult to resolve given the long lifetime of N2O, and major parts of the world lack significant constraints on the seasonal cycle of fluxes. Current observations can largely correct a global bias in the stratospheric sink of N2O if emissions are known, but do not provide information on the temporal and spatial distribution of the sink. However, for the more realistic scenario where source and sink are both uncertain, we find that simultaneously optimizing both would require unrealistically small errors in model transport. Regardless, a bias in the magnitude of the N2O sink would not affect the a posteriori N2O emissions for the two-year timescale used here, given realistic initial conditions, due to the timescale required for stratosphere–troposphere exchange (STE). The same does not apply to model errors in the rate of STE itself, which we show exerts a larger influence on the tropospheric burden of N2O than does the chemical loss rate over short (< 3 year) timescales. We use a stochastic estimate of the inverse Hessian for the inversion to evaluate the spatial resolution of emission constraints provided by the observations, and find that significant, spatially explicit constraints can be achieved in locations near and immediately upwind of surface measurements and the HIPPO flight tracks; however, these are mostly confined to North America, Europe, and Australia. None of the current observing networks are able to provide significant spatial information on tropical N2O emissions. There, averaging kernels are highly smeared spatially and extend even to the midlatitudes, so that tropical emissions risk being conflated with those elsewhere. For global inversions, therefore, the current lack of constraints on the tropics also places an important limit on our ability to understand extratropical emissions. Based on the error reduction statistics from the inverse Hessian, we characterize the atmospheric distribution of unconstrained N2O, and identify regions in and downwind of South America, Central Africa, and Southeast Asia where new surface or profile measurements would have the most value for reducing present uncertainty in the global N2O budget.
We use satellite observations of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectrometer (MODIS) together with the GEOS-Chem global chemical transport model to contrast export of aerosols from East Asia and North America during 2004–2010. The GEOS-Chem model reproduces the spatial distribution and temporal variations of Asian aerosol outflow generally well, although a low bias (−30%) is found in the model fine mode AOD. We use the model to identify 244 aerosol pollution export events from E. Asia and 251 export events from N. America over our 7-yr study period. When these events are composited by season, we find that the AOD in the outflow is enhanced by 50–100% relative to seasonal mean values. The composite Asian plume splits into one branch going poleward towards the Arctic, with the other crossing the Pacific in 6–8 days. A fraction of the aerosols is trapped in the subtropical Pacific High. The N. American plume travels to the northeast Atlantic, reaching Europe after 4–5 days. Part of the composite plume turns anticyclonically in the Azores High, where it slowly decays. Both the Asian and N. American export events are favored by a dipole structure in sea-level pressure anomalies, associated with mid-latitude cyclone activity over the respective source regions. The observed AOD in the E. Asian outflow exhibits stronger seasonality, with a spring maximum, than the N. American outflow, with a weak summer maximum. The large spring AOD in the Asian outflow is the result of enhanced sulfate and dust aerosol concentrations, but is also due to a larger export efficiency of sulfate and SO<sub>2</sub> from the Asian boundary layer relative to the N. American boundary layer. While the N. American sulfate outflow is mostly found in the lower troposphere (1–3 km altitude), the Asian sulfate outflow occurs at higher altitudes (2–6 km). In the Asian outflow 42–59% of the sulfate column is present above 2 km altitude, with only 24–35% in the N. American outflow. We link this to the factor of 2–5 lower precipitation in the warm conveyor belts (WCB) of midlatitude cyclones over E. Asia compared to N. America. This relative lack of precipitation makes Asian WCB very efficient for injecting aerosols in the middle troposphere
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.