Time-resolved Raman spectra of nitromethane shocked to 140 kbar peak pressure using step wave loading have been obtained. The CN stretch (917 cm-l), CH3 stretch (2968 cm-l), and the NO2 stretch/CH3 bend (1400/ 1377 cm-1) vibrations are all observed to harden when peak pressure is attained in the liquid samples. The spectra obtained show no frequency softening up to 400 ns after peak pressure is reached in the material. Upon unloading from 140 kbar, the CN stretch vibration reverts back, showing no signs of an irreversible change. W e also observe that the vibrational frequencies increase nonlinearly with peak pressure, with the CH3 stretching mode exhibiting the largest increase. The observed frequency hardening and broadening are suggestive of strong intermolecular interactions at these shock pressures. Implications of these observations with regard to attaining a precursor state for shock-induced chemical reactions are discussed.
A thermodynamically consistent equation of state (EOS) was developed for unreacted liquid nitromethane (NM). The specific heat cv, the coefficient of thermal pressure (∂P/∂T)v, and the isothermal bulk modulus BT, were modeled as functions of temperature and volume using existing experimental data. To test our EOS predictions, temperature measurements using time-resolved Raman spectroscopy were obtained from NM subjected to stepwise loading. In contrast to previous EOS developments, calculations using our EOS show good agreement with the measured temperatures. Comparison with previous EOS models shows that simplifying assumptions, such as holding (∂P/∂T)v or Γ/v constant, lead to significant inaccuracies in temperature predictions for shocked NM. The assumption that the Gruneisen parameter Γ is a function of volume only is not consistent with our EOS.
In-material, lateral, manganin foil gauge measurements were obtained in dense polycrystalline silicon carbide (SiC) shocked to peak longitudinal stresses ranging from 10–24 GPa. The lateral gauge data were analyzed to determine the lateral stresses in the shocked SiC and the results were checked for self-consistency through dynamic two-dimensional computations. Over the stress range examined, the shocked SiC has an extremely high strength: the maximum shear stress supported by the material in the shocked state increases from 4.5 GPa at the Hugoniot elastic limit (HEL) of the material (11.5 GPa) to 7.0 GPa at stresses approximately twice the HEL. The latter value is 3.7% of the shear modulus of the material. The elastic–inelastic transition in the shocked SiC is nearly indistinctive. At stresses beyond twice the HEL, the data suggest a gradual softening with increasing shock compression. The post-HEL material strength evolution resembles neither catastrophic failure due to massive cracking nor classical plasticity response. Stress confinement, inherent in plane shock wave compression, contributes significantly to the observed material response. The results obtained are interpreted qualitatively in terms of an inhomogeneous deformation mechanism involving both in-grain microplasticity and highly confined microfissures.
Longitudinal stress profiles have been measured in polycrystalline silicon carbide (SiC) shocked to peak stresses from 7.3 to 23 GPa. Dispersive wave fronts, consistent with the expected inelastic response, were observed beyond the previously reported Hugoniot elastic limit (HEL) of 11.7 GPa. Detailed numerical analyses were carried out to interpret the observed inelastic response using both a strain-hardening, plasticity model and a pressure-dependent strength, stress relaxation model. Both models show good agreement with the data; the latter provides a better fit to the transient features in the measurements suggesting rate dependence in the material response. The computed Hugoniot curve matches all of the peak state data for two different types of SiC that display more than 20 % variation in HEL. This suggests that the measured HEL for SiC is not a proper indicator of the material strength in the shocked state. The results also show that the longitudinal data and analyses are insufficient to resolve issues related to material strength and mechanisms governing inelastic deformation in shocked SiC. The need for a more complete characterization of the shock response of a high-strength brittle material is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.