Nanofluids manage heat in the internal combustion of the engines or machines by avoiding corrosion in the cooling system as well as assist in eradicating the engine’s waste heat. Hence, they are used as coolants in many automotive industries. Inspired by these applications, the thermal and mass transfer in hybrid nanoliquid flow over a stretching cylinder on taking account of magnetic dipole is studied in this investigation. Here, we have done a comparative study on flow of two diverse combinations of hybrid nanofluids, namely
MnZnFe
2
O
4
−
NiZnFe
2
O
4
−
C
10
H
22
and
Cu
−
Al
2
O
3
−
C
10
H
22
.
The modelled equation for the assumed flow is converted to ODEs by opting appropriate similarity variables. These ODEs are solved by utilizing the Runge–Kutta Fehlberg fourth-fifth order (RKF-45) method by adopting shooting technique. Physical clarification of relevant parameters for non-dimensional discrete flow fields are discussed briefly by using graphs. Also, skin friction, Sherwood and Nusselt numbers are deliberated with the assistance of graphs. Results reveal that, the upsurge in ferromagnetic interaction parameter declines the velocity in both fluids but converse trend is detected in temperature and concentration of the liquids. The heightening of ferromagnetic interaction parameter declines the rate of heat and mass transfer.
This paper analyzes the two-dimensional chlorine-transport model in pipes. The studied model is in the form of a second-order partial differential equation with a set of boundary conditions. Obtaining exact solution for the current model is a challenge due to the nature of the involved boundary conditions, especially, when applying the Laplace transform. However, such difficulties are solved via implementing the method of residues. The exact solution is obtained in terms of the Bessel functions. The expression for a dimensionless cup-mixing average concentration is also derived analytically. The proposed approach is validated via numerical examples for comparing the results with those in the literature. The present analysis/approach is effective/straightforward and can be further applied on other similar models under different boundary conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.