[1] Submicron organic aerosol was measured simultaneously with an Aerodyne aerosol mass spectrometer (AMS) and a particle-into-liquid sampler (PILS) capable of measuring water-soluble organic carbon (WSOC) during the winter and summer of 2004 in Tokyo. Both techniques are being used to investigate the formation of secondary organic aerosol (SOA), and the combined data sets provide unique insights. In summer, about 80% (40-65%) of organic aerosols were oxygenated when scaled by total (carbon) mass concentration, due to high photochemical activity, leading to the active formation of SOA. In winter the fraction of oxygenated organic aerosol is reduced to 39% (total mass base) and 23% (carbon mass base). Previous AMS studies have shown that signals at m/z 44 of the AMS mass spectra of ambient aerosols are dominated by COO + , which typically originates from oxygenated organic aerosols (OOA). The signals at m/z 44 and the derived OOA mass concentrations were highly correlated with WSOC (r 2 = 0.78-0.91) throughout these seasons, indicating that OOA and WSOC were very similar in their chemical characteristics. Approximately 88 ± 29% of OOA was found to be water soluble on the basis of the comparison of the WSOC concentrations with those of oxygenated organic carbon (OOC) derived from the AMS data.
[1] Mass concentrations of elemental carbon (EC) in fine mode and mixing ratios of carbon monoxide (CO) were measured at the University of Tokyo campus in Tokyo in different seasons in [2003][2004][2005]. Measurements of EC were made using a semicontinuous thermal-optical analyzer. The mass concentrations of nonvolatile aerosol measured by the calibrated scanning mobility particle sizer combined with a heated inlet agreed with the independent EC measurements with a systematic difference of about 4%, demonstrating that the mass concentrations of nonvolatile aerosol well represent those for EC. A majority of the nonvolatile aerosol and therefore EC mass concentration was in volume equivalent diameters between 50 and 200 nm, peaking at around 130 nm. The correlation of EC and CO was generally compact throughout the measurement period because of the similarity in sources. The slope of the EC-CO correlation (DEC/DCO) is therefore a useful parameter in validating EC emission inventories. The EC concentration and DEC/DCO showed distinct diurnal variation. On weekdays, EC and DEC/DCO reached maximum values of about 3 mg m À3 and 9 ng m À3 /parts per billion by volume, respectively, in the early morning (0400-0800 local time), when the traffic density of heavy-duty trucks with diesel engines was highest. In addition, these values were lower by a factor of 2 on Sundays. The heavy truck traffic showed similar diurnal and weekday/weekend variations, indicating that exhaust from diesel engines is an important source of EC. Monthly mean DEC/DCO showed a seasonal variation, reaching broad maximum values in spring-autumn and reaching minimum values in midwinter, following the seasonal variation in temperature, as observed in Maryland, United States (Chen et al., 2001). This temperature dependence is likely due to the temperature dependence of EC emissions from diesel engines on intake air temperature. More stringent regulation of emissions of particles from diesel cars started in the Tokyo Metropolitan Area in October 2003. The DEC/DCO values did not change, however, exceeding the natural variability (10%) after 1 year from the start of the new regulations, when the temperature dependence is taken into account. This indicates that the regulation of particle emissions in the Tokyo Metropolitan Area was not effective in reducing the EC concentrations after 1 year.
Chromophoric water-soluble organic matter in atmospheric aerosols potentially plays an important role in aqueous reactions and light absorption by organics. The fluorescence and chemical-structural characteristics of the chromophoric water-soluble organic matter in submicron aerosols collected in urban, forest, and marine environments (Nagoya, Kii Peninsula, and the tropical Eastern Pacific) were investigated using excitation-emission matrices (EEMs) and a high-resolution aerosol mass spectrometer. A total of three types of water-soluble chromophores, two with fluorescence characteristics similar to those of humiclike substances (HULIS-1 and HULIS-2) and one with fluorescence characteristics similar to those of protein compounds (PLOM), were identified in atmospheric aerosols by parallel factor analysis (PARAFAC) for EEMs. We found that the chromophore components of HULIS-1 and -2 were associated with highly and less-oxygenated structures, respectively, which may provide a clue to understanding the chemical formation or loss of organic chromophores in atmospheric aerosols. Whereas HULIS-1 was ubiquitous in water-soluble chromophores over different environments, HULIS-2 was abundant only in terrestrial aerosols, and PLOM was abundant in marine aerosols. These findings are useful for further studies regarding the classification and source identification of chromophores in atmospheric aerosols.
The evolution of the mixing state of black carbon aerosol (BC) was investigated using a single‐particle soot photometer (SP2) in polluted air transported from Tokyo. Ground‐based measurements of aerosols and trace gases were conducted at a suburban site (Kisai) 50 km north of Tokyo during July–August 2004. The ratio of 2‐pentyl nitrate (2‐PeONO2) to n‐pentane (n‐C5H12) was used to derive the photochemical age. According to the SP2 measurement, the number fraction of thickly coated BC (Shell/Corel Ratio > ca. 2) with a core diameter of 180 nm increased at the rate of 1.9% h−1, as the photochemical clock proceeded under land‐sea breeze circulation. Positive matrix factorization was applied to investigate the time‐dependent contributions of different coating materials using the mass concentrations of sulfate, nitrate, and organics measured using an aerosol mass spectrometer. The main coating materials found in this study were sulfate and organics.
We report the evolution of the mixing state of black carbon (BC) particles in urban plumes measured by an airborne single particle soot photometer. The aircraft observations were conducted over the ocean near the coast of Japan in March 2004. The number fraction of coated BC particles with a core diameter of 180 nm increased from 0.35 to 0.63 within 12 hours (h), namely 2.3% h−1, after being emitted from the Nagoya urban area in Japan. BC particles with a core diameter of 250 nm increased at the slower rate of 1.0% h−1. The increase in coated BC particles was associated with increases in non‐sea salt sulfate and water‐soluble organic carbon by a factor of approximately two, indicating that these compounds contributed to the coating on the BC particles. These results give direct evidence that BC particles become internally mixed on a time scale of 12 h in urban plumes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.