The organic compound tracers of atmospheric particulate matter, as well as organic carbon (OC) and elemental carbon (EC), have been characterized for samples acquired during the ACEAsia campaign from Gosan, Jeju Island, Korea; Sapporo, Japan, and Chichi-jima Island in the western North Pacific, as well as on the NOAA R/V Ronald H. Brown. Total extracts were analyzed by GC-MS to determine both polar and aliphatic compounds. Total particles, organic matter and lipid and saccharide compounds were high during the Asian dust episode (early April 2001) compared to levels at other times. The organic matter can be apportioned to seven emission sources and to significant oxidation producing secondary products during long-range transport. Terrestrial natural background compounds are vascular plant wax lipids derived from direct emission and as part of desert sand dust. Fossil fuel utilization is obvious and derives from petroleum product and coal combustion emissions. Saccharides are a major polar (water-soluble) carbonaceous fraction derived from soil resuspension (agricultural activities). Biomass burning smoke is evident in all samples and seasons. It contributes up to 13% of the total compound mass as water-soluble constituents. Burning of refuse is another source of organic particles. Varying levels of marine-derived lipids are superimposed during aerosol transport over the ocean.Secondary oxidation products increase with increasing transport distance and time. The ACEAsia aerosols are comprised not only of desert dust, but also of soil dust, smoke from biomass and refuse burning, and emissions from fossil fuels use in urban areas.
[1] We used laser-induced fluorescence to measure the concentrations of OH and HO 2 radicals in central Tokyo during two intensive campaigns (IMPACT IVand IMPACT L) in January-February and July-August 2004. The estimated detection limit for the 10-min data was 1.3 Â 10 5 cm À3 for the nighttime and 5.2 Â 10 5 cm À3 for the daytime. The median values of the daytime peak concentrations of HO 2 were 1.1 and 5.7 pptv for the winter and summer periods, respectively, while the values for OH were 1.5 Â 10 6 and 6.3 Â 10 6 cm À3 . High HO 2 mixing ratios (>50 pptv) were observed on a day in summer when O 3 mixing ratios exceeded 100 ppbv. The average nighttime concentrations of HO 2 were 0.7 and 2.6 pptv for the winter and summer periods, respectively, while the values for OH were 1.8 Â 10 5 and 3.7 Â 10 5 cm À3 . A photochemical box model constrained by ancillary observations was able to reproduce daytime OH concentrations reasonably well for both periods, although daytime HO 2 concentrations were underestimated in winter and overestimated in summer. Increasing the wintertime hydrocarbon concentrations in the model led to an increase in daytime HO 2 concentrations, thereby showing better agreement with observations; however, the model continued to underestimate HO 2 concentrations at high NO mixing ratios. This underestimate was most pronounced in the mornings of both periods and during the daytime in winter. We studied processes that are capable of explaining this discrepancy, including unknown reactions of HNO 4 or an unidentified HO x source that is linearly scalable to the NO mixing ratio. The important processes in terms of producing radicals were the olefin + O 3 reactions in the nighttime of both periods and during the daytime in winter, the photolysis of carbonyls in the daytime for both periods, and the photolysis of HONO during the daytime in winter (using measured HONO concentrations) and during mornings in summer (using estimated HONO concentrations).
[1] Mass concentrations of elemental carbon (EC) in fine mode and mixing ratios of carbon monoxide (CO) were measured at the University of Tokyo campus in Tokyo in different seasons in [2003][2004][2005]. Measurements of EC were made using a semicontinuous thermal-optical analyzer. The mass concentrations of nonvolatile aerosol measured by the calibrated scanning mobility particle sizer combined with a heated inlet agreed with the independent EC measurements with a systematic difference of about 4%, demonstrating that the mass concentrations of nonvolatile aerosol well represent those for EC. A majority of the nonvolatile aerosol and therefore EC mass concentration was in volume equivalent diameters between 50 and 200 nm, peaking at around 130 nm. The correlation of EC and CO was generally compact throughout the measurement period because of the similarity in sources. The slope of the EC-CO correlation (DEC/DCO) is therefore a useful parameter in validating EC emission inventories. The EC concentration and DEC/DCO showed distinct diurnal variation. On weekdays, EC and DEC/DCO reached maximum values of about 3 mg m À3 and 9 ng m À3 /parts per billion by volume, respectively, in the early morning (0400-0800 local time), when the traffic density of heavy-duty trucks with diesel engines was highest. In addition, these values were lower by a factor of 2 on Sundays. The heavy truck traffic showed similar diurnal and weekday/weekend variations, indicating that exhaust from diesel engines is an important source of EC. Monthly mean DEC/DCO showed a seasonal variation, reaching broad maximum values in spring-autumn and reaching minimum values in midwinter, following the seasonal variation in temperature, as observed in Maryland, United States (Chen et al., 2001). This temperature dependence is likely due to the temperature dependence of EC emissions from diesel engines on intake air temperature. More stringent regulation of emissions of particles from diesel cars started in the Tokyo Metropolitan Area in October 2003. The DEC/DCO values did not change, however, exceeding the natural variability (10%) after 1 year from the start of the new regulations, when the temperature dependence is taken into account. This indicates that the regulation of particle emissions in the Tokyo Metropolitan Area was not effective in reducing the EC concentrations after 1 year.
We report the evolution of the mixing state of black carbon (BC) particles in urban plumes measured by an airborne single particle soot photometer. The aircraft observations were conducted over the ocean near the coast of Japan in March 2004. The number fraction of coated BC particles with a core diameter of 180 nm increased from 0.35 to 0.63 within 12 hours (h), namely 2.3% h−1, after being emitted from the Nagoya urban area in Japan. BC particles with a core diameter of 250 nm increased at the slower rate of 1.0% h−1. The increase in coated BC particles was associated with increases in non‐sea salt sulfate and water‐soluble organic carbon by a factor of approximately two, indicating that these compounds contributed to the coating on the BC particles. These results give direct evidence that BC particles become internally mixed on a time scale of 12 h in urban plumes.
[1] Semicontinuous measurements of submicron water-soluble organic carbon (WSOC) aerosol were made simultaneously with organic carbon (OC) and elemental carbon (EC) in the Tokyo urban area in winter, summer, and fall 2004. The measurements of WSOC and OC/EC were made every 6 min and 1 hour, respectively, using a particle-into-liquid sampler (PILS) with a total organic carbon (TOC) analyzer and with an EC-OC analyzer using a thermal-optical technique. The PILS and 12-hour integrated filter measurements of WSOC agreed to within 12%. The WSOC mass concentrations and WSOC/OC ratio showed diurnal variations with peaks at 1200-1400 LT in summer and later in the afternoon in winter. On average, the WSOC/OC ratio was 0.20 and 0.35 mg C/mg C for winter and summer/late fall, respectively. The difference in the winter and summer frequency distributions of the WSOC/OC ratio suggests that the sampled air masses in summer and fall were more photochemically processed than those in winter. Secondary organic carbon (SOC) concentrations were estimated using the EC-tracer method. The measured WSOC was highly correlated with the derived SOC (r 2 = 0.61-0.79), with WSOC/SOC slopes of 0.67 to 0.75 mg C/mg C for each season. These results suggest that the WSOC and SOC were similar in their chemical characteristics in this study. Water-insoluble organic carbon (WIOC) ( = OC-WSOC) correlated well with EC and CO (r 2 = 0.59-0.73). The diurnally averaged WIOC/EC ratios were nearly constant (1.1 ± 0.1 mg C/mg C) throughout the study periods, suggesting that motor vehicle emissions were an important source of WIOC. A dominant portion (about 90% or more) of the POC was water-insoluble, consistent with previous studies of POC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.