Here we report a facile synthesis of Pt-on-Pd bimetallic nanodendrites with a Pd interior and dendritic Pt exterior. The developed route rationally utilizes the spontaneous separation of the depositions of Pd and Pt, which endows direct formation of Pt-on-Pd nanodendrites. This is a truly simple and unique process that is quite different from the traditional seed-mediated growth strategy. Fine-tuning of the Pt and Pd ratios afforded Pt-on-Pd nanodendrites with superior electrocatalytic activity in comparison with commercial Pt electrocatalysts.
Au@Pt nanocolloids with nanostructured dendritic Pt shells are successfully synthesized by chemically reducing both H 2 PtCl 6 and HAuCl 4 species in the presence of a low-concentration surfactant solution. By applying an ultrasonic treatment, the particle size of the Au@Pt nanocolloids is dramatically decreased and their size distribution becomes very narrow. The difference in reduction potentials of the two soluble metal salts (Au(III) and Pt(IV) species) plays a key role in the one-step synthesis of the core-shell structure. Because of the different reduction potentials, the reduction of Au ions preferentially occurs over a short time to form the Au seeds. It is followed by overgrowth of Pt nanodendritic nanowires on the Au seeds, which is confirmed by ultraviolet-visible light absorption spectroscopy and transmission electron microscopy. Interestingly, the Pt shell thicknesses on Au cores can be easily tuned by controlling the Pt/Au molar ratios in the starting precursor solutions. Through the optimization of the Pt shell thicknesses, the Au@Pt nanocolloids can exhibit enhanced activity as an electrocatalyst for a methanol oxidation reaction, which will be important to improve the utilization efficiency of Pt catalysts in the future.
Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.