A microprocessor test vehicle was developed for the investigation of asynchronous design methodology for rapidsingle-flux-quantum (RSFQ) circuits. We have designed and implemented a fully asynchronous RSFQ microprocessor, named SCRAM2. The data-driven self-timing (DDST) architecture is used for the design of circuit blocks of the SCRAM2. In order to ensure the logical ordering between the circuit blocks, bit-serial handshaking was adopted. The performance of the handshaking system was enhanced based on the scalable-delay-insensitive (SDI) model. The SCRAM2 is an 8-bit bit-serial microprocessor with three-stage pipelining, with a basic microarchitecture similar to that of our previously designed synchronous microprocessor, CORE1. The estimated average performance of the SCRAM2 is 577 MIPS using a logic simulation. We have implemented all circuit components using the SRL 2.5 kA cm 2 Nb process and confirmed their correct operation. Several operations of the SCRAM2 have been successfully confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.