Regenerative medicine aims to engineer materials to replace or restore damaged or diseased organs. The mechanical properties of such materials should mimic the human tissues they are aiming to replace; to provide the required anatomical shape, the materials must be able to sustain the mechanical forces they will experience when implanted at the defect site. Although the mechanical properties of tissue-engineered scaffolds are of great importance, many human tissues that undergo restoration with engineered materials have not been fully biomechanically characterized. Several compressive and tensile protocols are reported for evaluating materials, but with large variability it is difficult to compare results between studies. Further complicating the studies is the often destructive nature of mechanical testing. Whilst an understanding of tissue failure is important, it is also important to have knowledge of the elastic and viscoelastic properties under more physiological loading conditions. This report aims to provide a minimally destructive protocol to evaluate the compressive and tensile properties of human soft tissues. As examples of this technique, the tensile testing of skin and the compressive testing of cartilage are described. These protocols can also be directly applied to synthetic materials to ensure that the mechanical properties are similar to the native tissue. Protocols to assess the mechanical properties of human native tissue will allow a benchmark by which to create suitable tissue-engineered substitutes.
Currently, autologous cartilage provides the gold standard for auricular reconstruction. However, synthetic biomaterials offer a number of advantages for ear reconstruction including decreased donor site morbidity and earlier surgery. Critical to implant success is the material’s mechanical properties as this affects biocompatibility and extrusion. The aim of this study was to determine the biomechanical properties of human auricular cartilage. Auricular cartilage from fifteen cadavers was indented with displacement of 1 mm/s and load of 300 g to obtain a Young’s modulus in compression. Histological analysis of the auricle was conducted according to glycoprotein, collagen, and elastin content. The compression modulus was calculated for each part of the auricle with the tragus at 1.67 ± 0.61 MPa, antitragus 1.79 ± 0.56 MPa, concha 2.08 ± 0.70 MPa, antihelix 1.71 ± 0.63 MPa, and helix 1.41 ± 0.67 MPa. The concha showed to have a significantly greater Young’s Elastic Modulus than the helix in compression (p < 0.05). The histological analysis demonstrated that the auricle has a homogenous structure in terms of chondrocyte morphology, extracellular matrix and elastin content. This study provides new information on the compressive mechanical properties and histological analysis of the human auricular cartilage, allowing surgeons to have a better understanding of suitable replacements. This study has provided a reference, by which cartilage replacements should be developed for auricular reconstruction.Electronic supplementary materialThe online version of this article (doi:10.1007/s10439-016-1688-1) contains supplementary material, which is available to authorized users.
BackgroundAutologous and synthetic nasal and auricular frameworks require skin coverage. The surgeon’s decides on the appropriate skin coverage for reconstruction based on colour matching, subcutaneous tissue thickness, expertise and experience. One of the major complications of placing subcutaneous implants is the risk of extrusion (migration through the skin) and infection. However, knowledge of lessening the differential between the soft tissue and the framework can have important implications for extrusion. This study compared the mechanical properties of the skin commonly used as skin sites for the coverage in auricular and nasal reconstruction.MethodsUsing ten fresh human cadavers, the tensile Young’s Modulus of the skin from the forehead, forearm, temporoparietal, post-auricular and submandibular neck was assessed. The relaxation rate and absolute relaxation level was also assessed after 90 min of relaxation.ResultsThe submandibular skin showed the greatest Young’s elastic modulus in tension of all regions (1.28 MPa ±0.06) and forearm showed the lowest (1.03 MPa ±0.06). The forehead demonstrated greater relaxation rates among the different skin regions (7.8 MPa−07 ± 0.1). The forearm showed the lowest rate of relaxation (4.74 MPa−07 ± 0.1). The forearm (0.04 MPa ±0.004) and submandibular neck skin (0.04 MPa ±0.005) showed similar absolute levels of relaxation, which were significantly greater than the other skin regions (p < 0.05).ConclusionsThis study provides an understanding into the biomechanical properties of the skin of different sites allowing surgeons to consider this parameter when trying to identify the optimal skin coverage in nasal and auricular reconstruction.Electronic supplementary materialThe online version of this article (doi:10.1186/s40463-017-0210-6) contains supplementary material, which is available to authorized users.
Nasal reconstruction is currently performed using autologous grafts provides but is limited by donor site morbidity, tissue availability and potentially graft failure. Additionally, current alternative alloplastic materials are limited by their high extrusion and infection rates. Matching mechanical properties of synthetic materials to the native tissue they are replacing has shown to be important in the biocompatibility of implants. To date the mechanical properties of the human nasal cartilages has not been studied in depth to be able to create tissue-engineered replacements with similar mechanical properties to native tissue. The young’s modulus was characterized in compression on fresh-frozen human cadaveric septal, alar, and lateral cartilage. Due to the functional differences experienced by the various aspects of the septal cartilage, 16 regions were evaluated with an average elastic modulus of 2.72 ± 0.63 MPa. Furthermore, the posterior septum was found to be significantly stiffer than the anterior septum (p < 0.01). The medial and lateral alar cartilages were tested at four points with an elastic modulus ranging from 2.09 ± 0.81 MPa, with no significant difference between the cartilages (p < 0.78). The lateral cartilage was tested once in all cadavers with an average elastic modulus of 0.98 ± 0.29 MPa. In conclusion, this study provides new information on the compressive mechanical properties of the human nasal cartilage, allowing surgeons to have a better understanding of the difference between the mechanical properties of the individual nasal cartilages. This study has provided a reference, by which tissue-engineered should be developed for effective cartilage replacements for nasal reconstruction.Graphical AbstractElectronic supplementary materialThe online version of this article (doi:10.1007/s10856-015-5619-8) contains supplementary material, which is available to authorized users.
PurposeDetails regarding tracheal anatomy are currently lacking, with existing literature focussing mainly on the cricoid-tracheal region or the carina. External gross anatomy and internal morphology throughout the entire trachea is important for normal physiological functioning and various clinical applications such as designs for tracheal implants or endotracheal devices.ObjectiveTo determine quantitative and qualitative characteristics of gross tracheal and individual tracheal ring anatomy.Method10 tracheas were harvested from formaldehyde-fixed cadavers. Tracheal length, height and inter-ring distance were measured from complete tracheas. Individual rings were excised and the following measurements were taken at three points on the ring: thickness, width, and antero-posterior (A-P) length.ResultsThe average tracheal length was 10.38 ± 0.85 cm with a mean of 19 ± 3 rings per trachea. The average width and A-P diameter of tracheal lumens were 17.31 ± 2.57 and 17.27 ± 2.56 mm, with a width-AP ratio of 1.00 (‘C’ shaped ring). The A-P diameter shows a trend of narrowing slightly from the upper 1/3 to the lower 1/3 of the trachea. While majority of tracheal rings consisted of the expected ‘C’ shape, more than 41% of the 147 counted rings consisted of abnormally shaped rings which were further analysed.ConclusionThis study provides further details regarding tracheal anatomy which will be useful for implant design. Of interest for anatomists, is the marked variability in tracheal ring morphology which could be further characterised in larger studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.