The valence band and core-level photoelectron spectroscopy [using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS)] were used to probe the interfacial reaction between glass and a commercial adhesive (Loctite). The interaction was investigated by comparing experimental valence band spectra with spectra calculated for various possible interaction schemes. The valence band spectrum for the interfacial region between the glass and the adhesive was obtained using difference spectra on a thin film of adhesive on glass. This film was sufficiently thin that the adhesion interphase could be directly probed. Chemical interaction occurs at the interface as evidenced by the fact that the spectrum for the interfacial region could not be represented by the addition of the spectrum of the glass alone and the adhesive alone. The XPS valence band spectrum and the UPS spectrum showed that the shallow top surface layer is very much enriched in acrylic acid, which is a minor component in the adhesive. When the Loctite adhesive was coated on glass, the C1s and O1s regions of the adhesion interface region showed evidences of new chemistry at the adhesive-glass interface. The possible reactions were evaluated by comparison of the experimental spectra with calculated ones based on different models using ab initio molecular orbital calculations. The experimental spectra are well represented by models where the acrylic acid of the surface region of the adhesive reacts with the glass, suggesting chemical interaction occurred at the adhesion interphase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.