Piezoelectric tube scanner is a major component that used in nanoscale imaging tools such as atomic force microscopy (AFM). This is because it can provide precise nanoscale positioning. However the precision is limited by vibration and some nonlinear drawbacks represented by creep and hysteresis. Hysteresis problem appears when positioning is needed at wide range. In this paper, a feed forward multi-layer neural network (MLNN) is trained to shape a proper control signal based on reference input and actual output signals. The experimental results show that the developed neural network scheme improves the performance of the system by significantly minimizing the effect of hysteresis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.