Purpose This study improves the robustness of the model-free controller based on a virtual structure. Additionally, the adverse interference between the proof-mass actuator resonance and a controlled object is investigated as it is not clarified in the previous studies. Methods and Results A virtual structure modeled as a SDOF system was inserted between the actuator and the actual controlled object. This achieved the indirect damping of the actual controlled object and model-free control. Vibration control simulations were conducted for various finite element models with a model-free $${H}_{\infty }$$ H ∞ controller based on a virtual structure. The results demonstrate that the actuator resonance adversely affects the stability of the control system when the controlled object has a mode whose natural frequency is too close to that of the actuator. Therefore, a notch filter was applied to the model-free $${H}_{\infty }$$ H ∞ controller design approach to suppress the resonance without affecting the damping performance. The improved controller with notch filter is more robust to the resonance of the actuator than the previous one. Conclusions The resonance of the proof-mass actuator adversely affects the stability of the control system composed of the previous model-free $${H}_{\infty }$$ H ∞ controller when the low-order vibration mode of the actual controlled object is too close to the natural frequency of the actuator. Introducing a notch filter into the model-free approach based on a virtual structure effectively reduces the negative impact due to the resonance of the actuator and improves the robustness of the control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.