International collaboration on development of a stellarator confinement database has progressed. More than 3000 data points from nine major stellarator experiments have been compiled. Robust dependences of the energy confinement time on the density and the heating power have been confirmed. Dependences on other operational parameters, i.e. the major and minor radii, magnetic field and the rotational transform
, have been evaluated using inter-machine analyses. In order to express the energy confinement in a unified scaling law, systematic differences in each subgroup are quantified. An a posteriori approach using a confinement enhancement factor on ISS95 as a renormalizing configuration-dependent parameter yields a new scaling expression ISS04;
. Gyro–Bohm characteristic similar to ISS95 has been confirmed for the extended database with a wider range of plasma parameters and magnetic configurations than in the study of ISS95. It has also been discovered that there is a systematic offset of energy confinement between magnetic configurations, and its measure correlates with the effective helical ripple of the external stellarator field. Full documentation of the International Stellarator Confinement Database is available at http://iscdb.nifs.ac.jp/ and http://www.ipp.mpg.de/ISS.
The three-dimensional (3D) magnetohydrodynamic (MHD) equilibrium solver HINT is improved as a new HINT code, 'HINT2' having various useful features by introducing modern computing techniques. By using the algorithm inherent to HINT2, the treatment of the peripheral plasma corresponding to the experimental results is addressed in the Large Helical Device (LHD).
Abstract. In the Large Helical Device (LHD), the volume averaged beta value <β dia > of 5 %, which is the highest value in all of heliotron/stellarators and relevant to the reactor requirement, was achieved by optimizing the magnetic configuration from the viewpoint of magneto-hydrodynamic (MHD) characteristics, transport and heating efficiency of the neutral beam. This beta value was instantaneously obtained by pellet injection and maintained for more than 10τ E , whereas the steady state plasma with a maximum <β dia > of 4.8 % was sustained for 85τ E by the gas-puff fueling. While it is predicted theoretically that stochastization of the peripheral magnetic field structure develops with an increment of <β dia >, no serious degradation of the global confinement has been observed in the present <β dia > range. The several low-order MHD activities located in the periphery were enhanced with the beta value and sometimes affect the local profiles. The amplitude of the mode in the periphery strongly depends on the magnetic Reynolds number, which is close to that of the growth rate and/or the radial mode width of the resistive interchange instability.
The dynamics of the magnetic island structure in the plasma are investigated in plasmas with a wide range of beta and collisionality. The perturbed magnetic field is diagnosed by a toroidal array of flux loops installed in the vacuum vessel on the Large Helical Device (LHD). It is found that the magnetic island grows with beta at relatively low beta values. In contrast, when the beta exceeds a critical value, the sign of the perturbed magnetic field suddenly reverses and its strength saturates to the magnetic field perturbation required to cancel the external perturbation. This suggests spontaneous healing of the magnetic island.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.