Two identical layered metal–organic frameworks (MOFs) (CoFRS and NiFRS) are constructed by using flexible 1,10‐bis(1,2,4‐triazol‐1‐yl)decane as pillars and 1,4‐benzenedicarboxylic acid as rigid linkers. The single‐crystal structure analysis indicates that the as‐synthesized MOFs possess fluctuant 2D networks with large interlayer lattices. Serving as active electrode elements in supercapacitors, both MOFs deliver excellent rate capabilities, high capacities, and longstanding endurances. Moreover, the new intermediates in two electrodes before and after long‐lifespan cycling are also examined, which cannot be identified as metal hydroxides in the peer reports. After assembled into battery‐supercapacitor (BatCap) hybrid devices, the NiFRS//activated carbon (AC) device displays better electrochemical results in terms of gravimetric capacitance and cycling performance than CoFRS//AC devices, and a higher energy‐density value of 28.7 Wh kg−1 compared to other peer references with MOFs‐based electrodes. Furthermore, the possible factors to support the distinct performances are discussed and analyzed.
Using the classical oscillator model, the optical dielectric functions for amorphous alumina (a-Al2O3) and gamma alumina (γ-Al2O3) thin films prepared by ion implantation and subsequent annealing of sapphire (α-Al2O3) substrates were determined for the first time from analysis of infrared reflection spectra. Two transverse optical modes at 422 and 721 cm−1 were obtained for the a-Al2O3 film while four modes at 357, 536, 744, and 807 cm−1 were identified for the γ-Al2O3 film. Also, the problems involving the analysis of modes with large damping are discussed.
Recent progress in MOF materials for SCs with different spatial dimensions, such as 2D MOFs, including conductive MOFs and nanosheets, and 3D MOFs, categorized as single metallic and multiple metallic MOFs, are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.