Influence of the freshwater influx, the wind forcing and the Indian Ocean monsoon drift current on the property distributions and the circulation in the Bay of Bengal during southwest monsoon has been quantified. At the head of the Bay, waters of low salinity, affected by the freshwater influx, occupy the upper 90 m water column. The isohaline 34.0 x 10-3 separating these waters from those of underlying saline waters shoals southward gradually and outcrops around 14N, ION and 6N in the western, central and southeastern regions of the Bay respectively. The wind-stress-cur\-induced upwelling effect is confined to depth limits of 50-100 m as is supported by a band of cold (24°-19°C) water in the central Bay. In the southern and central regions of the Bay, the monsoon drift current feeds the large scale cyclonic gyre apart from maintaining the northward flowing boundary current in the eastern Bay. A warm (27°-23°C), saline (35.0-35.2 x 10-3 ) watermass is advected northeastward along with the monsoon drift current into the Bay up to 14N at the depth limits of 50-100 m. Below this depth, in the western Bay a well-defined southward flow in the form of a boundary current is documented. Intense vertical mixing is inferred at the zones of salinity fronts in the depth limits of 40-100 m and also at deeper depths (> 2200 m) and elsewhere lateral mixing is predominant.
The semi-enclosed nature of the Red Sea (20.2°N–38.5°N) makes it a natural laboratory to study the influence of environmental gradients on microbial communities. This study investigates the composition and structure of microbial prokaryotes and eukaryotes using molecular methods, targeting ribosomal RNA genes across different regions and seasons. The interaction between spatial and temporal scales results in different scenarios of turbulence and nutrient conditions allowing for testing of ecological theory that categorizes the response of the plankton community to these variations. The prokaryotic reads are mainly comprised of Cyanobacteria and Proteobacteria (Alpha and Gamma), with eukaryotic reads dominated by Dinophyceae and Syndiniophyceae. Periodic increases in the proportion of Mamiellophyceae and Bacillariophyceae reads were associated with alterations in the physical oceanography leading to nutrient increases either through the influx of Gulf of Aden Intermediate Water (south in the fall) or through water column mixing processes (north in the spring). We observed that in general dissimilarity amongst microbial communities increased when nutrient concentrations were higher, whereas richness (observed OTUs) was higher in scenarios of higher turbulence. Maximum abundance models showed the differential responses of dominant taxa to temperature giving an indication how taxa will respond as waters become warmer and more oligotrophic.
The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.