International audienceWe report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spin-precession frequencies of stored ultracold neutrons and Hg199 atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10-24≤ma≤10-17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40
We demonstrate that massive fields, such as dark matter, can directly produce a cosmological evolution of the fundamental constants of nature. We show that a scalar or pseudoscalar (axionlike) dark matter field ϕ, which forms a coherently oscillating classical field and interacts with standard model particles via quadratic couplings in ϕ, produces "slow" cosmological evolution and oscillating variations of the fundamental constants. We derive limits on the quadratic interactions of ϕ with the photon, electron, and light quarks from measurements of the primordial (4)He abundance produced during big bang nucleosynthesis and recent atomic dysprosium spectroscopy measurements. These limits improve on existing constraints by up to 15 orders of magnitude. We also derive limits on the previously unconstrained linear and quadratic interactions of ϕ with the massive vector bosons from measurements of the primordial (4)He abundance.
Tensor-scalar theory is a wide class of alternative theory of gravitation that can be motivated by higher dimensional theories, by models of dark matter or dark ernergy. In the general case, the scalar field will couple non-universally to matter producing a violation of the equivalence principle. In this communication, we review a microscopic model of scalar/matter coupling and its observable consequences in terms of universality of free fall, of frequencies comparison and of redshifts tests. We then focus on two models: (i) a model of ultralight scalar dark matter and (ii) a model of scalarized black hole in our Galactic Center. For both these models, we present constraints using recent measurements: atomic clocks comparisons, universality of free fall measurements, measurement of the relativistic redshift with the short period star S0-2 orbiting the supermassive black hole in our Galactic Center.
Any slight variations in the fundamental constants of Nature, which may be induced by dark matter or some yet-to-be-discovered cosmic field, would characteristically alter the phase of a light beam inside an interferometer, which can be measured extremely precisely. Laser and maser interferometry may be applied to searches for the linear-in-time drift of the fundamental constants, detection of topological defect dark matter through transient-in-time effects and for a relic, coherently oscillating condensate, which consists of scalar dark matter fields, through oscillating effects. Our proposed experiments require either minor or no modifications of existing apparatus, and offer extensive reach into important and unconstrained spaces of physical parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.