Abstract.Flooding is one of the most common natural hazards that produce substantial loss of life and property. The QPE products that are derived at high spatiotemporal resolution, which is enabled by the deployment of a dense radar network, have the potential to improve the prediction of flash-flooding threats when coupled with hydrological models. The US National Science Foundation Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is dedicated to revolutionizing our ability to observe, understand, predict, and respond to hazardous weather events, especially in the lower atmosphere. CASA's technology enables precipitation observation close to the ground and QPE is one of the important products generated by the system. This paper describes the CASA QPE system built on the various underlying technologies of networked X-band radar systems providing high-resolution (in space and time) measurements, using the rainfall products from the radar. Evaluation of the networked rainfall product using 5 yr of data from the CASA IP-1 test bed is presented. Cross validation of the product using 5 yr of data with a gauge network is also provided. The validation shows the excellent performance of the CASA QPE system with a standard error of 25 % and a low bias of 3.7 %. Examples of various CASA rainfall products including instantaneous and hourly rainfall accumulations are shown.
An embedding technique is presented to estimate standard model ττ backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed μμ events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS . Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at √s=13 TeV corresponding to an integrated luminosity of 41.5 fb−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.