The results of an extensive test program to characterize the behavior of typical aircraft structures under acoustic loading and to establish their fatigue endurance are presented. The structures tested were the three flap-like box-type of structures. Each structure consisted of one flat (bottom) and one curved (top) stiffener stiffened skin panel, front, and rear spars, and ribs that divided the structures into three bays. The three structures, constructed from three different materials (aircraft standard aluminum alloy, Carbon Fibre Reinforced Plastic, and a Glass Fibre Metal Laminate, i.e., GLARE) had the same size and configuration, with only minor differences due to the use of different materials. A first set of acoustic tests with excitations of intensity ranging from 140 to 160 dB were carried out to obtain detailed data on the dynamic response of the three structures. The FE analysis of the structures is also briefly described and the results compared with the experimental data. The fatigue endurance of the structures was then determined using random acoustic excitation with an overall sound pressure level of 161 dB, and details of crack propagation are reported.
A continuum damage mechanics model was proposed to predict the high cycle fatigue life. In order to consider mean stress effects, the Walker correction was introduced in proposed model. The model was verified by experimental data on LC4 and LY12CZ aluminum alloy under high cycle fatigue loading. The results showed that the predicted life of proposed model well correlated with experimental data.
Details of the current research activities in the Department of Aeronautics and Astronautics, on the response of advanced aircraft structures to acoustic loading, are presented. Both box type and sandwich structures, employing aluminium alloy, carbon fibre reinforced plastic, and GLARE composite materials, are being investigated. In order to develop design guidelines for these complex structures, it is necessary to combine theoretical predictions, using the finite element method, with experimental measurements of the structural response to random acoustic loading. Both types of structure will be tested in the Progressive Wave Tube facility at Southampton. In addition, it is hoped that a more comprehensive damping guide will be produced for the type of structure used in advanced aircraft design.
During the modification of the aircraft fuselage panel, the fatigue performance of the structure changes. To ensure the safety and reliability of commercial aircraft, the fatigue life assessment of the modified structure is required. In this paper, the detailed fatigue rating method was used for fatigue assessment. The strain information of the modified structure during the flight was obtained by installing fiber Bragg grating sensors. Through the finite element analysis, the fatigue critical parts were determined and the measured data before modification were converted into the data after modification. The detailed fatigue ratings of the fatigue critical parts were calculated. The fatigue life of the critical parts was evaluated based on the linear fatigue damage cumulative rule. According to the results, the most critical part was determined, which provides a basis for the determination of the modification plan of the fuselage panel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.