Diabetes was an increasing public health problem nowadays. Accumulating evidences had shed a light on the involvement of endothelial cell dysfunction in the pathogenesis of diabetes-associated vascular diseases. MiR-21, a multiple-functional miRNA, was evidenced to be involved in endothelial dysfunction, however, the underlying molecular mechanisms were still unknown. In current study, we investigated the intrinsic link between miR-21 and high glucose-induced endothelial dysfunction. We demonstrated that expression of miR-21 was elevated in circulating endothelial progenitor cells from diabetes patients. Further, inhibition of miR-21 markedly enhanced high glucose-induced endothelial cytotoxicity. Furthermore, proteomic profiling was applied to analyze the downstream effectors involved in miR-21-meidated protection of endothelial cells. A total of 31 proteins were positively identified, including Annexin A2, S100A4, SOD2, Thioredoxin and DAXX. Altered expression of these proteins was validated by immunoblot. Finally, mechanistic study showed that miR-21 protected endothelial cell against high glucose-induced endothelial cytotoxicity probably by inhibiting the expression of DAXX. Our findings were considered as a significant step toward a better understanding of diabetes-associated vascular diseases.
Circular RNAs act as vital regulators in diverse diseases.However, the investigation of circular RNAs in sepsis-engendered acute kidney injury remains dismal. We aimed to explore the effects of circular RNA protein kinase C iota (circ-PRKCI) in lipopolysaccharide (LPS)-mediated HK2 cell injury. Sepsis in vitro model was established by LPS treatment. Quantitative real-time polymerase chain reaction assay was conducted for determining the levels of circ-PRKCI, microRNA-106b-5p (miR-106b-5p), and growth factor receptor binding 2-associated binding protein 1 (GAB1). Cell viability and apoptosis were evaluated using Cell Counting Kit-8 assay and flow cytometry analysis, respectively. The concentrations of interleukin-6, interleukin-1b, and tumor necrosis factor-a were measured with enzyme-linked immunosorbent assay kits. The levels of oxidative stress markers were determined using relevant commercial kits. Western blot assay was conducted for B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), and GAB1 protein levels. Dualluciferase reporter assay and RNA immunoprecipitation assay were used to verify the association between miR-106b-5p and circ-PRKCI or GAB1. We found the Circ-PRKCI level was decreased in sepsis patients and LPS-induced human kidney 2 (HK-2) cells. LPS exposure inhibited cell viability and facilitated apoptosis, inflammation, and oxidative stress in HK-2 cells. Circ-PRKCI overexpression abrogated the effects of LPS on cell apoptosis, inflammation, and oxidative stress in HK-2 cells. Furthermore, circ-PRKCI was identified as the sponge for miR-106b-5p to positively regulate GAB1 expression. Overexpression of circ-PRKCI relieved LPS-mediated HK-2 cell damage by sponging miR-106b-5p. MiR-106b-5p inhibition ameliorated the injury of HK-2 cells mediated by LPS, whereas GAB1 knockdown reversed the effect. Collectively, Circ-PRKCI overex-pression attenuated LPS-induced HK-2 cell injury by regulating miR-106b-5p/GAB1 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.