Dietary acidifiers appear to be a possible alternative to feed antibiotics in order to improve performance of weaning pigs. It is generally known that dietary acidifiers lower gastric pH, resulting in increased activity of proteolytic enzymes, improved protein digestibility and inhibiting the proliferation of pathogenic bacteria in GI tract. It is also hypothesized that acidifiers could be related to reduction of gastric emptying rate, energy source in intestine, chelation of minerals, stimulation of digestive enzymes and intermediate metabolism. However, the exact mode of action still remains questionable. Organic acidifiers have been widely used for weaning pigs' diets for decades and most common organic acidifiers contain fumaric, citric, formic and/or lactic acid. Many researchers have observed that dietary acidifier supplementation improved growth performance and health status in weaning pigs. Recently inorganic acidifiers as well as organic acidifiers have drawn much attention due to improving performance of weaning pigs with a low cost. Several researchers introduced the use of salt form of acidifiers because of convenient application and better effects than pure state acids. However, considerable variations in results of acidifier supplementation have been reported in response of weaning pigs. The inconsistent responses to dietary acidifiers could be explained by feed palatability, sources and composition of diet, supplementation level of acidifier and age of animals.
Four experiments were conducted to investigate the effect of organic or inorganic acid supplementation on the growth performance, nutrient digestibility, intestinal measurements and white blood cell counts of weanling pigs. In growth trial (Exp I), a total of 100 crossbred pigs ({Landrace×Yorkshire}×Duroc), weaned at 23±2 days of age and 7.25±0.10 kg average initial body weight (BW), were allotted to 5 treatments by body weight and sex in a randomized complete block (RCB) design. Three different organic acids (fumaric [FUA], formic [FOA] or lactic acid [LAA]) and one inorganic acid (hydrochloric acid [SHA]) were supplemented to each treatment diet. Each treatment had 5 replicates with 4 pigs per pen. During 0-3 wk, average daily gain (ADG), average daily feed intake (ADFI) and feed efficiency (G/F ratio) were not significantly different among treatments. However, pigs fed LAA or SHA diet showed improved ADG by 15 or 13% respectively and 12% greater ADFI in both treatments compared to CON diets. Moreover, compared to organic acid treatments, better ADG (p = 0.07) and ADFI (p = 0.09) were observed in SHA diet compared to pigs that were fed the diet containing organic acids (FUA, FOA or LAA). However, during 4-5 wk, no differences in ADG, ADFI and G/F ratio were observed among treatments. Overall, ADG, ADFI and G/F ratio were not affected by acidifier supplementation. Although it showed no significant difference, pigs fed LAA or SHA diets showed numerically higher ADG and ADFI than pigs fed other treatments. In metabolic trial (Exp II), 15 pigs were used to evaluate the effect of acidifier supplementation on nutrient digestibility. The digestibility of dry matter (DM), crude protein (CP), crude fat (CF), crude ash (CA), calcium (Ca) and phosphorus (P) was not improved by acidifier supplementation. Although the amount of fecal-N excretion was not different among treatments, that of urinary-N excretion was reduced in acidsupplemented treatments compared to CON group (p = 0.12). Subsequently, N retention was improved in acid-supplemented groups (p = 0.17). In anatomical trial (Exp III), the pH and Clconcentrations of digesta in gastrointestinal (GI) tracts were not affected by acidifier supplementation. No detrimental effect of intestinal and lingual (taste bud) morphology was observed by acidifier supplementation particularly in inorganic acid treatment. In white blood cell assay (Exp IV), 45 pigs were used for measuring white blood cell (WBC) counts. In all pigs after LPS injection, WBC counts had slightly declined at 2 h and kept elevating at 8 h, then returned to baseline by 24 h after injection of lipopolysaccharide (LPS). However, overall WBC counts were not affected by acidifier supplementation. In conclusion, there was no difference between organic and inorganic acidifier supplementation in weanling pigs' diet, however inorganic acidifier might have a beneficial effect on growth performance and N utilization with lower supplementation levels. Furthermore, inorganic acidifier had no negative effect on intestina...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.