Interdigitated photodetectors (IPDs) based on the twodimensional electron gas (2DEG) at the AlGaN/GaN interface have gained prominence as high sensitivity ultraviolet (UV) PDs due to their excellent optoelectronic performance. However, most 2DEG-IPDs have been built on rigid substrates, thus limiting the use of 2DEG-IPDs in flexible and wearable applications. In this paper, we have demonstrated high performance flexible AlGaN/GaN 2DEG-IPDs using AlGaN/GaN 2DEG heterostructure membranes created from 8 in. AlGaN/GaN on insulator (AlGaN/GaNOI) substrates. The interdigitated AlGaN/GaN heterostructure has been engineered to reduce dark current by disconnecting the conductive channel at the heterostructure interface. Photocurrent has been also boosted by the escaped carriers from the 2DEG layer. Therefore, the utilization of a 2DEG layer in transferrable AlGaN/ GaN heterostructure membranes offers great promises for high performance flexible 2DEG-IPDs for advanced UV detection systems that are critically important in myriad biomedical and environmental applications.
In this review, the primary focus is the recent advances in the development of freestanding inorganic crystalline semiconductors and their manipulation technology for flexible optoelectronic applications. We firstly cover the details of the growth and processing techniques of freestanding inorganic crystalline semiconductors in various dimensions and their material property under strain condition. Finally, fabrication processes and opto-electrical properties of flexible optoelectronics are introduced. Future research directions are also discussed, including further enhancement of device performance, building more types of optoelectronic devices on flexible substrates, and process integration for the advanced optoelectronic circuits and systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.