Quasi-distributed acoustic sensing (Q-DAS) based on ultra-weak fiber Bragg grating (UWFBG) is currently attracting great attention, due to its high sensitivity and excellent multiplexing capability. Phase-sensitive optical time-domain reflectometry (Φ-OTDR) based on phase demodulation is one of the most promising interrogation schemes for Q-DAS. In this article, a novel interleaved identical chirped pulse (IICP) approach is proposed on the basis of pulse compression Φ-OTDR with coherent detection. Different from the frequency-division-multiplexing (FDM) method, the identical pulses are used for multiplexing in the IICP scheme, and the mixed reflection signals can be demodulated directly, so the inconsistent phase offsets in FDM can be avoided. As a result, this scheme can enlarge the measurement slew-rate (SR) of Q-DAS by times compared with traditional single pulse scheme. In the proof-of-principle experiment, the SR of 28.9 mɛ/s has been achieved with an 860 m sensing range, which is 5 times as that of the traditional single pulse scheme; meanwhile, the response bandwidth has been enlarged by 5 times. The 277 kHz response bandwidth has been achieved, with 5 m spatial resolution and 2.8
p
ε
/
Hz
strain sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.