Background:The phosphoinositide 3-kinase (PI3K)/Akt signalling pathway appears to be a key regulator in cervical carcinogenesis. However, the downstream regulatory mechanism of PI3K/Akt signalling remains largely unknown.Methods:The expression of miR-196a in cervical cancer cell lines and cervical cancer tissues was examined using real-time PCR. The effects of miR-196a on PI3K/Akt signalling and cellular proliferation were evaluated by bromodeoxyuridine labelling, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide, colony formation assays and luciferase assays.Results:The expression level of miR-196a was markedly increased in cervical cancer tissues and cell lines compared with normal cervical tissue and normal cervical squamous cells. Upregulation of miR-196a was correlated with advanced tumour stage and poor overall and recurrence-free survival in cervical cancer patients. Upregulation of miR-196a enhanced G1/S-phase transition and the proliferative ability of cervical cancer cells, whereas suppression of miR-196a had the opposite effect. Using bioinformatics and biological approaches, we showed that FOXO1 and p27Kip1, two key effectors of PI3K/Akt signalling, were direct targets of miR-196a.Conclusions:Our findings suggest that miR-196a has an important role in promoting human cervical cancer cell proliferation and may represent a novel therapeutic target of microRNA-mediated suppression of cell proliferation in cervical cancer.
Background Lung squamous cell carcinoma (LUSC) is an important subtype of non-small cell lung cancer. Its special clinicopathological features and molecular background determine the limitations of its treatment. A recent study published on Science defined a newly regulatory cell death (RCD) form – cuproptosis. Which manifested as an excessive intracellular copper accumulation, mitochondrial respiration-dependent, protein acylation-mediated cell death. Different from apoptosis, pyroptosis, necroptosis, ferroptosis and other forms of regulatory cell death (RCD). The imbalance of copper homeostasis in vivo will trigger cytotoxicity and further affect the occurrence and progression of tumors. Our study is the first to predict the prognosis and immune landscape of cuproptosis-related genes (CRGs) in LUSC. Methods The RNA-seq profiles and clinical data of LUSC patients were downloaded from TCGA and GEO databases and then combined into a novel cohort. R language packages are used to analyze and process the data, and CRGs related to the prognosis of LUSC were screened according to the differentially expressed genes (DEGs). After analyzed the tumor mutation burden (TMB), copy number variation (CNV) and CRGs interaction network. Based on CRGs and DEGs, cluster analysis was used to classify LUSC patients twice. The selected key genes were used to construct a CRGs prognostic model to further analyze the correlation between LUSC immune cell infiltration and immunity. Through the risk score and clinical factors, a more accurate nomogram was further constructed. Finally, the drug sensitivity of CRGs in LUSC was analyzed. Results Patients with LUSC were divided into different cuproptosis subtypes and gene clusters, showing different levels of immune infiltration. The risk score showed that the high-risk group had higher tumor microenvironment score, lower tumor mutation load frequency and worse prognosis than the low-risk group. In addition, the high-risk group was more sensitive to vinorelbine, cisplatin, paclitaxel, doxorubicin, etoposide and other drugs. Conclusions Through bioinformatics analysis, we successfully constructed a prognostic risk assessment model based on CRGs, which can not only accurately predict the prognosis of LUSC patients, but also evaluate the patient 's immune infiltration status and sensitivity to chemotherapy drugs. This model shows satisfactory predictive results and provides a reference for subsequent tumor immunotherapy.
immune checkpoints 32 4 Background 33 Recently, inflammation and immune evasion are considered as hallmarks 34 of cancer progression, highlighting the direct involvement of immune 35 cells [1, 2] . The study on immunology has made great progress in cancer 36 treatment, and the role of immune cells in cancer progression is 37 well-recognized [3, 4] . Cancer immunotherapy has subverted the traditional 38 concept of treatment, such as immune checkpoint inhibitors, cancer 39 vaccines and chimeric antigen receptor redirected T (CAR-T) cell 40 therapy [5][6][7][8] . 41 The research progresses on cancer has indicated that metabolic 42 reprogramming is another hallmark of cancer [9] . Cells that are common to 43 many cancers that do not produce enough energy due to lack of oxygen, 44 carbohydrate or protein use altered metabolic pathways to ensure their 45 survival. Thus, malignant cells acquire the molecular materials and 46 energy necessary to sustain proliferation through unusual metabolic 47 157 metabolism-immune pairs in HC is several to hundreds of times as many 158 as that in tumors, except THCA. In THCA case, HC and tumor had the 159
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.