Background Occult peritoneal metastasis (PM) in advanced gastric cancer (AGC) patients is highly possible to be missed on computed tomography (CT) images. Patients with occult PMs are subject to late detection or even improper surgical treatment. We therefore aimed to develop a radiomic nomogram to preoperatively identify occult PMs in AGC patients. Patients and methods A total of 554 AGC patients from 4 centers were divided into 1 training, 1 internal validation, and 2 external validation cohorts. All patients’ PM status was firstly diagnosed as negative by CT, but later confirmed by laparoscopy (PM-positive n = 122, PM-negative n = 432). Radiomic signatures reflecting phenotypes of the primary tumor (RS1) and peritoneum region (RS2) were built as predictors of PM from 266 quantitative image features. Individualized nomograms of PM status incorporating RS1, RS2, or clinical factors were developed and evaluated regarding prediction ability. Results RS1, RS2, and Lauren type were significant predictors of occult PM (all P < 0.05). A nomogram of these three factors demonstrated better diagnostic accuracy than the model with RS1, RS2, or clinical factors alone (all net reclassification improvement P < 0.05). The area under curve yielded was 0.958 [95% confidence interval (CI) 0.923–0.993], 0.941 (95% CI 0.904–0.977), 0.928 (95% CI 0.886–0.971), and 0.920 (95% CI 0.862–0.978) for the training, internal, and two external validation cohorts, respectively. Stratification analysis showed that this nomogram had potential generalization ability. Conclusion CT phenotypes of both primary tumor and nearby peritoneum are significantly associated with occult PM status. A nomogram of these CT phenotypes and Lauren type has an excellent prediction ability of occult PM, and may have significant clinical implications on early detection of occult PM for AGC.
Deletion of 3p12-22 is frequent in multiple cancer types, indicating the presence of critical tumor-suppressor genes (TSGs) at this region. We studied a novel candidate TSG, CMTM7, located at the 3p22.3 CMTM-gene cluster, for its tumor-suppressive functions and related mechanisms. The three CMTM genes, CMTM6, 7 and 8, are broadly expressed in human normal adult tissues and normal epithelial cell lines. Only CMTM7 is frequently silenced or downregulated in esophageal and nasopharyngeal cell lines, but uncommon in other carcinoma cell lines. Immunostaining of tissue microarrays for CMTM7 protein showed its downregulation or absence in esophageal, gastric, pancreatic, liver, lung and cervix tumor tissues. Promoter CpG methylation and loss of heterozygosity were both found contributing to CMTM7 downregulation. Ectopic expression of CMTM7 in carcinoma cells inhibits cell proliferation, motility and tumor formation in nude mice, but not in immortalized normal cells, suggesting a tumor inhibitory role of CMTM7. The tumor-suppressive function of CMTM7 is associated with its role in G1/S cell cycle arrest, through upregulating p27 and downregulating cyclin-dependent kinase 2 (CDK2) and 6 (CDK6). Moreover, CMTM7 could promote epidermal growth factor receptor (EGFR) internalization, and further suppress AKT signaling pathway. Thus, our findings suggest that CMTM7 is a novel 3p22 tumor suppressor regulating G1/S transition and EGFR/AKT signaling during tumor pathogenesis.
Microwave observations of quasi-periodic pulsations (QPP) in multi-timescales are confirmed to be associated with an X3.4 flare/CME event at Solar Broadband Radio Spectrometer in Huairou (SBRS/Huairou) on 13 December 2006. It is most remarkable that the timescales of QPPs are distributed in a broad range from hecto-second (very long period pulsation, VLP, the period P > 100 s), deca-second (long period pulsation, LPP, 10 < P < 100 s), few seconds (short period pulsation, SPP, 1 < P < 10 s), deci-second (slow-very short period pulsation, slow-VSP, 0.1 < P < 1.0 s), to centi-second (fast-very short period pulsation, fast-VSP, P < 0.1 s), and forms a broad hierarchy of timescales. The statistical distribution in logarithmic period-duration space indicates that QPPs can be classified into two groups: group I includes VLP, LPP, SPP and part of slow-VSPs distributed around a line approximately; group II includes fast-VSP and most of slow-VSP dispersively distributed away from the above line. This feature implies that the generation mechanism of group I is different from group II. Group I is possibly related with some MHD oscillations in magnetized plasma loops in the active region, e.g., VLP may be generated by standing slow sausage mode coupling and resonating with the underlying photospheric 5-min oscillation, the modulation is amplified and forms the main framework of the whole flare/CME process; LPP, SPP, and part of slow-VSPs are most likely to be caused by standing fast modes or LRC-circuit resonance in current-carrying plasma loops. Group II is possibly generated by modulations of resistive tearing-mode oscillations in electric current-carrying flaring loops.
Quasi-periodic pulsations (QPPs) are frequently observed in solar flares, which may reveal some essential characteristics of both thermal and nonthermal energy releases. This work presents multi-wavelength imaging observations of an M8.7 flare in active region AR 12242 on 2014 December 17. We found that there were three different QPPs: UV QPPs with a period of about 4 minutes at 1600 Å images near the center of the active region lasting from the preflare phase to the impulsive phase; EUV QPPs with a period of about 3 minutes along the circular ribbon during the preflare phase; and radio QPPs with a period of about 2 minutes at frequencies of 1.2–2.0 GHz around the flaring source region during the impulsive phase. The observations include the radio images observed by the Mingantu Spectral Radioheliograph in China at frequencies of 1.2–2.0 GHz for the first time, microwave images by the Nobeyama Radioheliograph, UV and EUV images by AIA/SDO, and a magnetogram by HMI/SDO. We suggest that the 4 minute UV QPPs should be modulated by the sunspot oscillations, and the 3 minute EUV QPPs are closely related to the 2 minute radio QPPs for their source regions connected by a group of coronal loops. We propose that the intermittent magnetic reconnecting downward and upward plasmoids may be the possible trigger of both the preflare 3 minute EUV QPPs and the impulsive 2 minute radio QPPs. The other possible mechanism is LRC oscillation, which is associated with the current-carrying coronal loops. The latter mechanism implies that the existence of preflare QPPs may be a possible precursor to solar flares.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.