The tetrahedral cobalt(II) complex [CoL2](HNEt3)2 (I), where L is 1,2-bis(methanesulfonamido)benzene, exhibiting the properties of a single-molecule magnet is synthesized and characterized. The electronic structure parameters of complex I are determined by paramagnetic NMR spectroscopy. They completely reproduce the results of less available methods of studying single-molecule magnets. The value of axial anisotropy of the magnetic susceptibility estimated for complex I (Δχax = 34.5 × 10–32 m3 at 20°C) is record-breaking among all transition metal complexes studied by the NMR method, which provides wide possibilities for the use of complex I as a paramagnetic label for structural biology or as a contrast agent and even a temperature sensor for medical diagnostics. The data obtained indicate the advantages of paramagnetic NMR spectroscopy as a method of investigation of the magnetic properties and electronic structures of highly anisotropic transition metal complexes, which are precursors of many functional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.