Interferon alpha (IFN-alpha) modulates the proliferation of different human tumour cell lines. It has been shown that IFN-alpha induces the growth inhibition of T-cell acute lymphoblastic leukaemia (T-ALL). However, its intracellular signalling mechanisms remain unknown. This study found that IFN-alpha inhibited the cell proliferation of human T-ALL cell line Jurkat in a dose- and time-dependent manner. A p38 inhibitor (SB203580), but not an extracellular signal-regulated kinase 1/2 inhibitor (PD98059) or c-Jun N-terminal kinase inhibitor (SP600125), eliminated IFN-alpha inhibition of Jurkat cell proliferation, indicating that p38 pathway is crucial for IFN-alpha-mediated growth inhibition. SB203580 targeted two p38 isoforms, p38alpha and p38beta. The expression of p38alpha and p38beta mRNA in Jurkat cells was examined by reverse transcriptase-polymerase chain reaction. The kinase activity of p38alpha and p38beta was activated by IFN-alpha in Jurkat cells. To investigate the role of p38alpha and p38beta isoforms in IFN-alpha-mediated growth inhibition, we generated stable clones that overexpressed the dominant-negative p38 isoform, p38alpha(AF) or p38beta(AF), in Jurkat cells. Overexpression of p38alpha(AF) or p38beta(AF) inhibited IFN-alpha-mediated p38 kinase activity and growth inhibition in Jurkat cells. Similarly, down-regulation of either p38alpha or p38beta by isoform-specific small interference RNAs also reduced IFN-alpha-mediated growth inhibition. These results demonstrate that IFN-alpha can regulate growth inhibition of Jurkat cells through p38alpha and p38beta.
The human interleukin-3 receptor (hIL-3R) consists of a unique alpha subunit (hIL-3Ralpha) and a common beta subunit (betac). Binding of IL-3 to IL-3R activates Janus kinases JAK1 and JAK2. Our previously study showed that JAK2 and JAK1 were constitutively associated with the hIL-3Ralpha and betac subunits, respectively. In this study, we further demonstrate that JAK2 binds to the intracellular domain of hIL-3Ralpha and JAK1 binds to the Box 1 and Box 2 motifs of betac using GST-hIL-3R fusion proteins in pull-down assays. JAK1 mutational analysis revealed that its JH7-3 domains bound directly to the Box 1 and Box 2 motifs of betac. We further examined the role of JAK1 JH7-3 domains in JAK1 and JAK2-mediated signaling using the CDJAKs fusion proteins, which consisted of a CD16 extracellular domain, a CD7 transmembrane domain, and either JAK1 (CDJAK1), JAK2 (CDJAK2), or JAK1-JH7-3 domains (CDJAK1-JH7-3) as intracellular domains. Anti-CD16 antibody crosslinking of wild type fusion proteins CDJAK1 with CDJAK2 could mimic IL-3 signaling, however, the crosslinking of fusion proteins CDJAK1-JH7-3 with CDJAK2 failed to activate downstream proteins. These results suggest that the JAK1-JH7-3 domains are required for betac interaction and abolish wild type JAK1 and JAK2-mediated signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.