Background: Mesenchymal stem/stromal cells (MSCs) and macrophages are critical components in many tissue microenvironments, including that in adipose tissue. The close interaction between MSCs and macrophages modulates various adipose-related disease development. However, the effects of macrophages on the fate of MSCs remain largely elusive. We here studied the effect of macrophages on the adipogenic differentiation of MSCs. Methods: Macrophages were obtained from THP-1 cells treated with phorbol-12-myristate-13-acetate (PMA). The induced matured macrophages were then induced to undergo classically activated macrophage (M1) or alternatively activated macrophage (M2) polarization with Iipopolysaccharide (LPS)/interferon (IFN)-γ and interleukin (IL)-4/IL-13, respectively. The supernatants derived from macrophages under different conditions were applied to cultured human adipose tissue-derived mesenchymal stem/stromal cells (hADSCs) undergoing adipogenic differentiation. Adipogenic differentiation was evaluated by examining Oil Red O staining of lipid droplets and the expression of adipogenesisrelated genes with real-time quantitative polymerase chain reaction (Q-PCR) and western blot analysis. Results: The adipogenic differentiation of hADSCs was impaired when treated with macrophage-derived supernatants, especially that from the M1-polarized macrophage (M1-sup). The inhibitory effect was found to be mediated by the inflammatory cytokines, mainly tumor necrosis factor-α (TNF-α) and IL-1β. Blocking TNF-α and IL-1β with neutralizing antibodies partially alleviated the inhibitory effect of M1-sup. Conclusion: Macrophage-derived supernatants inhibited the adipogenic differentiation of hADSCs in vitro, irrespective of the polarization status (M0, M1 or M2 macrophages). M1-sup was more potent because of the higher expression of pro-inflammatory cytokines. Our findings shed new light on the interaction between hADSCs
The sorption performance of tetracycline (TC) on HCl-modified zeolite under different conditions was investigated. HCl-modified zeolite exhibited more than two times higher adsorption capacity than natural one. Adsorption kinetics and adsorption equilibrium isotherms were studied by conducting series of batch experiments. The kinetic analysis indicated that the pseudo-second-order kinetic model was well described the sorption equilibrium process of tetracycline onto natural and HCl-modified zeolites, and intra-particle diffusion was not the only rate-limiting in the sorption process. The results from sorption equilibrium studies showed that the Langmuir and Dubinin-Radushkevich (D-R) isotherm models were well fitted to experimental data, the value of E confirmed that the adsorption was controlled by physical combined with chemical adsorption mechanism. The sorption removal capacity is relatively higher at low pH. The adsorption removal rate of wastewater containing 0.1 mmol/L tetracycline was 95.5% when the dosage of treated zeolite was 0.05g.
Effect of multi-section linear non-uniform heat transfer coefficient on quenching residual stress distribution in 27mm-thick Al-Zn-Mg-Cu aluminum alloy plate was simulation studied by using the finite element method, and the surface quenching residual stress distribution was measured by the X-ray diffraction method and hole-drilling method. The results show that the surface quenching residual stress represents the same distribution with non-uniform heat transfer coefficient in the transverse direction and the stress level maintains initial stress level of the heat transfer coefficient at each location. The distribution of the quenching residual stress in the center of the plate is approximately uniform and the stress level is approximately equal to average of maximum and minimum initial stress level. The measured surface quenching residual stress shows a wavy distribution in the transverse direction, which is similar to the simulated surface stress distribution without considering the stress level. The measurement results can be explained by the multi-section linear non-uniform quenching model.
The process of motorcycle seat styling is a grey system with partially known and partially unknown information and is influenced by various factors. In this study, Grey Modelling (GM)(1,1) is used to predict the style of a motorcycle seat, and the shape features of the seat are extracted via morphological analysis and are parameterized. The process of shape evolution is established, and the modelling characteristics are predicted by GM(1,1). The kansei study is performed using five adjectives describing the seat styles to establish the equation of kansei regression analysis. The regression analysis is employed to modify predictive modelling. A certain brand of motorcycle seats is modelled to analyse and verify the feasibility and scientific applicability of adopting GM(1,1) in predicting motorcycle seat styling, which provided a feasible and effective reference for the motorcycle seat design.
Improving high-temperature strength of aluminum piston material is a core technology for diesel engines to high speed and high intensity. To figure out the influence of alumina reinforced aluminum composites to the thermal load of high intensity piston, this paper study the properties of the alumina fiber reinforced aluminum composite and its protection for piston. The research shows that, compared with the cast aluminum, the high tensile strength and fatigue limit of the composite were increased by about 25% and 26% respectively. Therefore, the alumina fiber reinforced composite could not improve the temperature distribution of the piston, but it can improve high temperature strength and the operational reliability of the piston.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.