The phylogeny and biogeography of the genus Paphiopedilum were evaluated by using phylogenetic trees derived from analysis of nuclear ribosomal internal transcribed spacer (ITS) sequences, the plastid trnL intron, the trnL-F spacer, and the atpB-rbcL spacer. This genus was divided into three subgenera: Parvisepalum, Brachypetalum, and Paphiopedilum. Each of them is monophyletic with high bootstrap supports according to the highly resolved phylogenetic tree reconstructed by combined sequences. There are five sections within the subgenus Paphiopedilum, including Coryopedilum, Pardalopetalum, Cochlopetalum, Paphiopedilum, and Barbata. The subgenus Parvisepalum is phylogenetic basal, which suggesting that Parvisepalum is comprising more ancestral characters than other subgenera. The evolutionary trend of genus Paphiopedilum was deduced based on the maximum likelihood (ML) tree and Bayesian Evolutionary Analysis Sampling Trees (BEAST). Reconstruct Ancestral State in Phylogenies (RASP) analyses based on the combined sequence data. The biogeographic analysis indicates that Paphiopedilum species were firstly derived in Southern China and Southeast Asia, subsequently dispersed into the Southeast Asian archipelagoes. The subgenera Paphiopedilum was likely derived after these historical dispersals and vicariance events. Our research reveals the relevance of the differentiation of Paphiopedilum in Southeast Asia and geological history. Moreover, the biogeographic analysis explains that the significant evolutionary hotspots of these orchids in the Sundaland and Wallacea might be attributed to repeated migration and isolation events between the southeastern Asia mainland and the Sunda Super Islands.
BackgroundPhalaenopsis is one of the important commercial orchids in the world. Members of the P. amabilis species complex represent invaluable germplasm for the breeding program. However, the phylogeny of the P. amabilis species complex is still uncertain. The Phalaenopsis amabilis species complex (Orchidaceae) consists of subspecies amabilis, moluccana, and rosenstromii of P. amabilis, as well as P. aphrodite ssp. aphrodite, P. ap. ssp. formosana, and P. sanderiana. The aims of this study were to reconstruct the phylogeny and biogeographcial patterns of the species complex using Neighbor Joining (NJ), Maxinum Parsimony (MP), Bayesian Evolutionary Analysis Sampling Trees (BEAST) and Reconstruct Ancestral State in Phylogenies (RASP) analyses based on sequences of internal transcribed spacers 1 and 2 from the nuclear ribosomal DNA and the trnH-psbA spacer from the plastid DNA.ResultsA pattern of vicariance, dispersal, and vicariance + dispersal among disjunctly distributed taxa was uncovered based on RASP analysis. Although two subspecies of P. aphrodite could not be differentiated from each other in dispersal state, they were distinct from P. amabilis and P. sanderiana. Within P. amabilis, three subspecies were separated phylogenetically, in agreement with the vicariance or vicariance + dispersal scenario, with geographic subdivision along Huxley’s, Wallace’s and Lydekker’s Lines. Molecular dating revealed such subdivisions among taxa of P. amabilis complex dating back to the late Pleistocene. Population-dynamic analyses using a Bayesian skyline plot suggested that the species complex experienced an in situ range expansion and population concentration during the late Last Glacial Maximum (LGM).ConclusionsTaxa of the P. amabilis complex with disjunct distributions were differentiated due to vicariance or vicariance + dispersal, with events likely occurring in the late Pleistocene. Demographic growth associated with the climatic oscillations in the Würm glacial period followed the species splits. Nevertheless, a subsequent population slowdown occurred in the late LGM due to extinction of regional populations. The reduction of suitable habitats resulted in geographic fragmenttation of the remaining taxa.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-015-0560-z) contains supplementary material, which is available to authorized users.
Huang-lian (Coptis plants in China) are essential medicinal plants in China, C. chinensis var. chinensis and C. deltoidea have been domesticated and cultivated for 700 years. In this study, the genetic diversity patterns and biogeographical information of cultivated Huang-lian and their wild relatives Coptis species were assessed using three plastids DNA regions. A total of 186 individuals from twenty-seven populations representing two species of cultivated Huang-lian and four species of wild relatives were collected and analyzed. Twenty-four haplotypes of six species were identified when three plastid spacers were combined. Historical biogeography inference revealed multiple dispersal events in the groups of cultivated Huang-lian and C. omeiensis. This evidence can infer that large initial population size and interbreeding with co-existing wild relatives in expanding new planting areas might be the main reason for maintaining the high genetic diversity of cultivated Huang-lian. Nevertheless, the multimodal curve of mismatch analysis and positive or negative differed among species and populations by neutrality tests indicated some groups of cultivated Huang-lian experienced genetic bottlenecks. Phylogeny analysis (NJ, MP, BI) showed that cultivated Huang-lian and C. omeiensis were clustered into a monophyletic group while C. chinensis var. brevisepala was paraphyletic, having earlier divergence time from C. chinensis var. chinensis (7.6 Ma) than C. omeiensis. Parsimony network demonstrated that C. deltoidea had more shared haplotypes with C. omeiensis than C. chinensis var. chinensis, and other haplotypes of C. deltoidea and C. omeiensis had less mutation steps than that of C. chinensis var. chinensis and C. omeiensis. This evidence suggests that C. omeiensis has a closer relationship with cultivated Huang-lian and might be a potential wild relative to C. deltoidea. The results reported here provide the baseline data for preserving genetic resources of Huang-lian and also evaluating the genetic impacts of long-term cultivation on medicinal plants, which could be instructive to future cultivation projects of traditional Chinese medicinal plants.
Leaf variegation is often the focus of plant breeding. Here, we studied a variegated mutant of Phalaenopsis aphrodite subsp. formosana, which is usually used as a parent of horticultural breeding, to understand its anatomic and genetic regulatory mechanisms in variegation. Chloroplasts with well-organized thylakoids and starch grains were found only in the mesophyll cells of green sectors but not of yellow sectors, confirming that the variegation belongs to the chlorophyll type. The two-dimensional electrophoresis and LC/MS/MS also reveal differential expressions of PsbP and PsbO between the green and yellow leaf sectors. Full-length cDNA sequencing revealed that mutant transcripts were caused by intron retention. When conditioning on the total RNA expression, we found that the functional transcript of PsbO and mutant transcript of PsbP are higher expressed in the yellow sector than in the green sector, suggesting that the posttranscriptional regulation of PsbO and PsbP differentiates the performance between green and yellow sectors. Because PsbP plays an important role in the stability of thylakoid folding, we suggest that the negative regulation of PsbP may inhibit thylakoid development in the yellow sectors. This causes chlorophyll deficiency in the yellow sectors and results in leaf variegation. We also provide evidence of the link of virus CymMV and the formation of variegation according to the differential expression of CymMV between green and yellow sectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.